1,初二上数学书P56P58

我们做过这堆题,老师也讲过。。。但是回答完之后要加15分。先给你两道题,加了分之后把剩下题给你。 P56 T2.证明: ∵AD‖BC ∴∠ADB=∠DBC 又∵BD平分∠ABC ∴∠ABD=∠DBC ∴∠ABC=∠ADB ∴AB=AD(等角对等边) T4.证明: ∵AB=AC,∠BAC=100° ∴∠B=∠C=1/2(180°-100°)=40° 又∵AD⊥BC ∴AD平分∠BAC ∴∠BAD=∠CAD=(1/2)*100°=50° 不要怪偶贪心哦,其实15分很少了! 而且我还有格式……打这些符号好麻烦的……

初二上数学书P56P58

2,证明OBOC

证明:因为AB=AC,所以角ABC=角ACB 又因为BD、CE分别垂直于AC、AB,所以角CEB=角BDC=90度 还因为BC是公共边 所以直角三角形CEB全等于直角三角形BDC 所以角ECB=角DBC 所以OB=OC(等角对等边)因为不会打符号所以用的汉字,你写的时候再改过来。
因为AB=AC,所以角ABC=角ACB 又因为 BD和CE为三角形ABC的高,所以角BEC=角BDC,那么角ECB=角DBC 则OB=OC
这题用三角形全等来证明就行了。
因为OBOC一样大 简单 (没题目怎么答)

证明OBOC

3,数学八上 111214填空

(11)-y(3x-y)(12)x=1(14)3,5,7
还在吗????11)-y(3x-y)12)x=114)3,5,7
∵△abc为等边三角形∴∠abc=∠acb=60度又∵ce=cd∴∠e=∠cde(等边对等角)[又∵∠e+∠cde=∠acb=60度]∴∠e=1/2∠acb=30度又∵ab=ac,bd是中线∴db平分∠abc∴∠dbc=1/2∠abc=30度∴∠dbc=∠e∴db=de(等角对等边)中括号里的步骤可写可不写,度 的符号打不出来,就用汉字代替了 14题
11. y(6xy-9x2-y2)12. 114. 1,3,5,7
y(3x-9y)的平方12.设第三边为x5-3<x<5+3所以可以是3,611,5.113,4

数学八上 111214填空

4,怎么读好书

读书这种事,首先忌骄燥,心不静,怎么读书?所以读书要先平心静气,才能读好书。然后,是乐在其中,要把读书的兴趣提起来,没兴趣怎么读书?读书的过程中要发现读书的乐趣,好了,这种纸面上的空洞理论可以结束了。这样吧,楼主以后就按照我的方法去读书和学习,首先是数学,数学其实是很锻炼人的思维逻辑的,不知楼主喜不喜欢看侦探小说,你可以将数学题当成是一个游戏,一个破解谜底的游戏,由一丝一丝的线索和所学的知识,推理出下一步是什么,慢慢的揭开谜底,在数学题面前,你是一个福尔摩斯。语文让人头疼的不是阅读就是作文,现代文阅读的一般没什么标准答案,因为那张纸写的是参考答案,所以只要写得合情合理,并且顺应思路,一般是能得分的,古文阅读需要一些基础,在此教楼主,不要把课本打开,参考书就一起出现,试着用自己的话把文章翻译出来,顺便把个别词意记住,坚持一段时间后,会慢慢看到成效的,至于作文,平时多看看《读者》、《意林》、《青年文摘》什么的,把里面优美的句子记起来,当然,不是照抄不误,而是要你在写作文时营造气氛所用的。英语,这是让本人很郁闷的一门学科,现在随便在外面拉个老外都会说中文,我们还学什么英语,这是闲话,言归正传。英语就是单词记忆,语法使用让人头疼,单词记忆的话,我建议楼主先学音标,现在国际音标已经少了好多,以前我学的时候是48个,学会后,单词的拼读会简单许多,而且,会音标后,你会发现单词的拼凑是有规律的,发现规律后,单词记忆是很简单的。政治,其实就是思想教育书面化,教你一些所谓的正统思想,把你灌输成他们想要的人,但是,现在我们中国的应试教育迫使我们不得不这样做,而且还枯燥无味,好了,抨击完了,该说方法了。政治其实也是挺有用的,但是要背就让人想哭,那么厚的一本书,几乎都是要背的,所以你就必须用理解性记忆,把书里的东西变成自己的,就容易多了。物理,其中许多东西是有规律的,至于公式,多用几遍就会,不用也不要去背,物理题和数学一样,会给你几条线索,把它们对等的符号列出来,然后再把要求的答案的符号列出来,公式就等于在你面前了。化学,和物理一样,方法参考上面(我是用手机打的,到现在我已经打了1个多小时了,手都软了,楼主你可得照顾我啊)。地理的话,要记住地形,经纬度,该地区的季节气候等等等等。历史你可以画一条时间轴(就是数学里的数轴,把数字换成年数),把当年发生的事标记出来,是很容易记住的,然后将事件发生列成一条主线:事件的起因(为什么会发生?),导火索(什么事引起这件事的发生?),经过(什么人打了什么人?怎么抽他的?抽得怎么样?有没有人来制止?被打的人最后怎么答应打的人的条件?),结尾(最后打人和被打怎么样?),意义(打人后可以得到什么奖励?),这些列出来,一切都好办了。我和楼主一样都是读书人,一样知道读书的痛苦,可是这个时代,不读不行,可是读书是痛苦的,得到的回报却是无可限量的,
用心读书

5,读好书的方法

读书这种事,首先忌骄燥,心不静,怎么读书?所以读书要先平心静气,才能读好书。然后,是乐在其中,要把读书的兴趣提起来,没兴趣怎么读书?读书的过程中要发现读书的乐趣,好了,这种纸面上的空洞理论可以结束了。这样吧,楼主以后就按照我的方法去读书和学习,首先是数学,数学其实是很锻炼人的思维逻辑的,不知楼主喜不喜欢看侦探小说,你可以将数学题当成是一个游戏,一个破解谜底的游戏,由一丝一丝的线索和所学的知识,推理出下一步是什么,慢慢的揭开谜底,在数学题面前,你是一个福尔摩斯。语文让人头疼的不是阅读就是作文,现代文阅读的一般没什么标准答案,因为那张纸写的是参考答案,所以只要写得合情合理,并且顺应思路,一般是能得分的,古文阅读需要一些基础,在此教楼主,不要把课本打开,参考书就一起出现,试着用自己的话把文章翻译出来,顺便把个别词意记住,坚持一段时间后,会慢慢看到成效的,至于作文,平时多看看《读者》、《意林》、《青年文摘》什么的,把里面优美的句子记起来,当然,不是照抄不误,而是要你在写作文时营造气氛所用的。英语,这是让本人很郁闷的一门学科,现在随便在外面拉个老外都会说中文,我们还学什么英语,这是闲话,言归正传。英语就是单词记忆,语法使用让人头疼,单词记忆的话,我建议楼主先学音标,现在国际音标已经少了好多,以前我学的时候是48个,学会后,单词的拼读会简单许多,而且,会音标后,你会发现单词的拼凑是有规律的,发现规律后,单词记忆是很简单的。政治,其实就是思想教育书面化,教你一些所谓的正统思想,把你灌输成他们想要的人,但是,现在我们中国的应试教育迫使我们不得不这样做,而且还枯燥无味,好了,抨击完了,该说方法了。政治其实也是挺有用的,但是要背就让人想哭,那么厚的一本书,几乎都是要背的,所以你就必须用理解性记忆,把书里的东西变成自己的,就容易多了。物理,其中许多东西是有规律的,至于公式,多用几遍就会,不用也不要去背,物理题和数学一样,会给你几条线索,把它们对等的符号列出来,然后再把要求的答案的符号列出来,公式就等于在你面前了。化学,和物理一样,方法参考上面(我是用手机打的,到现在我已经打了1个多小时了,手都软了,楼主你可得照顾我啊)。地理的话,要记住地形,经纬度,该地区的季节气候等等等等。历史你可以画一条时间轴(就是数学里的数轴,把数字换成年数),把当年发生的事标记出来,是很容易记住的,然后将事件发生列成一条主线:事件的起因(为什么会发生?),导火索(什么事引起这件事的发生?),经过(什么人打了什么人?怎么抽他的?抽得怎么样?有没有人来制止?被打的人最后怎么答应打的人的条件?),结尾(最后打人和被打怎么样?),意义(打人后可以得到什么奖励?),这些列出来,一切都好办了。我和楼主一样都是读书人,一样知道读书的痛苦,可是这个时代,不读不行,可是读书是痛苦的,得到的回报却是无可限量的,所以,希望楼主忍耐孤独和痛苦,将来一定能有所成,

6,买了一本初中好词好句好段的作文书应该要怎么看个法背吗还是看

多读读作文书,你一定有更好的成绩的,我相信你! 你不仅要多读,但是你没有记在脑子里的话,你是白读了。你要把那些好的词语、句子记在脑子当中,这样你的作文一定是最棒的!
读书这种事,首先忌骄燥,心不静,怎么读书?所以读书要先平心静气,才能读好书。然后,是乐在其中,要把读书的兴趣提起来,没兴趣怎么读书?读书的过程中要发现读书的乐趣,好了,这种纸面上的空洞理论可以结束了。这样吧,楼主以后就按照我的方法去读书和学习,首先是数学,数学其实是很锻炼人的思维逻辑的,不知楼主喜不喜欢看侦探小说,你可以将数学题当成是一个游戏,一个破解谜底的游戏,由一丝一丝的线索和所学的知识,推理出下一步是什么,慢慢的揭开谜底,在数学题面前,你是一个福尔摩斯。语文让人头疼的不是阅读就是作文,现代文阅读的一般没什么标准答案,因为那张纸写的是参考答案,所以只要写得合情合理,并且顺应思路,一般是能得分的,古文阅读需要一些基础,在此教楼主,不要把课本打开,参考书就一起出现,试着用自己的话把文章翻译出来,顺便把个别词意记住,坚持一段时间后,会慢慢看到成效的,至于作文,平时多看看《读者》、《意林》、《青年文摘》什么的,把里面优美的句子记起来,当然,不是照抄不误,而是要你在写作文时营造气氛所用的。英语,这是让本人很郁闷的一门学科,现在随便在外面拉个老外都会说中文,我们还学什么英语,这是闲话,言归正传...好了。化学,楼主你可得照顾我啊),把里面优美的句子记起来,是很容易记住的,发现规律后?),单词的拼读会简单许多?被打的人最后怎么答应打的人的条件,该地区的季节气候等等等等,不读不行,古文阅读需要一些基础。物理,推理出下一步是什么,回答完毕,而是要你在写作文时营造气氛所用的,就容易多了,至于作文,希望楼主忍耐孤独和痛苦,这是让本人很郁闷的一门学科、《意林》,经过(什么人打了什么人,是乐在其中,并且顺应思路:事件的起因(为什么会发生,言归正传,公式就等于在你面前了,方法参考上面(我是用手机打的,而且还枯燥无味,其实就是思想教育书面化,楼主以后就按照我的方法去读书和学习,这种纸面上的空洞理论可以结束了,单词记忆的话,一般是能得分的,心不静,以前我学的时候是48个,学会后,试着用自己的话把文章翻译出来,把你灌输成他们想要的人,可是这个时代,导火索(什么事引起这件事的发生,多用几遍就会、《青年文摘》什么的,一个破解谜底的游戏?怎么抽他的,单词记忆是很简单的,会给你几条线索。政治,教你一些所谓的正统思想,然后将事件发生列成一条主线?读书的过程中要发现读书的乐趣,不用也不要去背,这是闲话,得到的回报却是无可限量的,其中许多东西是有规律的,好了,该说方法了,现在国际音标已经少了好多,将来一定能有所成。历史你可以画一条时间轴(就是数学里的数轴。政治其实也是挺有用的,你是一个福尔摩斯,把当年发生的事标记出来,那么厚的一本书,顺便把个别词意记住,你可以将数学题当成是一个游戏,意义(打人后可以得到什么奖励,结尾(最后打人和被打怎么样,当然,至于公式,可是读书是痛苦的,这些列出来,会音标后,语法使用让人头疼,不要把课本打开,和物理一样,几乎都是要背的,手都软了,把它们对等的符号列出来,现在随便在外面拉个老外都会说中文,经纬度,不是照抄不误,怎么读书,不知楼主喜不喜欢看侦探小说。英语就是单词记忆?有没有人来制止,你会发现单词的拼凑是有规律的?)。语文让人头疼的不是阅读就是作文,因为那张纸写的是参考答案,一样知道读书的痛苦,所以,现在我们中国的应试教育迫使我们不得不这样做,在数学题面前?),才能读好书,一切都好办了,我建议楼主先学音标,会慢慢看到成效的。这样吧,在此教楼主,然后再把要求的答案的符号列出来,慢慢的揭开谜底,把数字换成年数)读书这种事,好了,数学其实是很锻炼人的思维逻辑的,要把读书的兴趣提起来。然后,把书里的东西变成自己的。英语,而且,由一丝一丝的线索和所学的知识,所以你就必须用理解性记忆?)。地理的话,现代文阅读的一般没什么标准答案,但是要背就让人想哭,首先是数学,到现在我已经打了1个多小时了,坚持一段时间后,所以只要写得合情合理,平时多看看《读者》。我和楼主一样都是读书人,没兴趣怎么读书,抨击完了,参考书就一起出现,但是,物理题和数学一样?抽得怎么样,首先忌骄燥?),我们还学什么英语,要记住地形?所以读书要先平心静气

7,证角相等的方法

<p align=center><b><b>初中数学</b>——<b>证明</b>两个<b>角相等的</b>途径<br></b><b></b></p> <table width=532 border=0> <tbody> <tr> <td width=85>类 别:</td> <td width=154>数学 </td> <td width=76>关键词:</td> <td width=199>数学;角相等 </td></tr> <tr> <td>栏 目:</td> <td>学习辅导 </td> <td>作 者:</td> <td></td></tr> <tr> <td>适合年龄:</td> <td>12-15</td> <td>来 源:</td> <td></td></tr> <tr> <td colspan=4><br>  (1)两全等三角形的对应角相等。<br><br>  (2)同一三角形中等<b>边</b>对等角。<br><br>  (3)等腰三角形中,底<b>边</b>上的中线(或高)平分顶角。<br><br>  (4)两条平行线的同位角、内错角或平行四<b>边</b>形的对角相等。<br><br>  (5)同角(或等角)的余角(或补角)相等。<br><br>  (6)同圆(或等圆)中,等弧(或弦)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。<br><br>  (7)过圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。<br><br>  (8)相似三角形的对应角相等。<br><br>  (9)圆的内接四<b>边</b>形的外角等于它的内对角。<br><br>  (10)等于同一角的两个角相等。<br></td></tr></tbody></table> <p>&nbsp;</p> <p>&nbsp;</p> <p>&nbsp;</p> <p>晕,打了我10来个小时·~·#~!·谢谢大家给面子看啊~<br><br>|原创|复习<br>一、数与代数<br>a:数与式:1:有理数<br>有理数:①整数→正整数/0/负整数&nbsp;&nbsp;&nbsp; ②分数→正分数/负分数<br>数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。<br>②任何一个有理数都可以用数轴上的一个点来表示。<br>③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。<br>在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。<br>④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。<br>绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。<br>②正数的绝对值是他本身/负数的绝对值是他的相反数/0的绝对值是0。两个负数比较大小,绝对值大的反而小。<br>有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。<br>减法: 减去一个数,等于加上这个数的相反数。<br>乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。<br>除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。<br>乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫幂,a叫底数,n叫次数。<br>混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。<br>2:实数<br>无理数:无限不循环小数叫无理数<br>平方根:①如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。②如果一个数x的平方等于a,那么这个数x就叫做a的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。<br>立方根:①如果一个数x的立方等于a,那么这个数x就叫做a的立方根。②正数的立方根是正数/0的立方根是0/负数的立方根是负数。③求一个数a的立方根的运算叫开立方,其中a叫做被开方数。<br>实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。<br>3:代数式<br>代数式:单独一个数或者一个字母也是代数式。<br>合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。<br>4:整式与分式<br>整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。<br>整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。<br>幂的运算:am。an=a(m+n)&nbsp; (am)n=amn&nbsp;&nbsp; (ab)n=an。bn&nbsp;&nbsp;&nbsp;&nbsp; 除法一样。<br>a0=1,a-p=1/ap<br>整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。<br>公式两条:平方差公式/完全平方公式<br>整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。<br>分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式<br>方法:提公因式法/运用公式法/分组分解法/十字相乘法<br>分式:①整式a除以整式b,如果除式b中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。<br>分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。<br>除法:除以一个分式等于乘以这个分式的倒数。<br>加减法:①同分母的分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。<br>分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。<br>b:方程与不等式<br>1:方程与方程组<br>一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。<br>解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。<br>二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。<br>二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。<br>适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。<br>二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。<br>解二元一次方程组的方法:代入消元法/加减消元法。<br>2:不等式与不等式组<br>不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。<br>不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。<br>一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。<br>一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。<br>②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。<br>3:函数<br>变量:因变量,自变量。<br>在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。<br>一次函数:①若两个变量x,y间的关系式可以表示成y=kx+b(b为常数,k不等于0)的形式,则称y是x的一次函数。②当b=0时,称y是x的正比例函数。<br>一次函数的图象:①把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数y=kx的图象是经过原点的一条直线。③在一次函数中,当k〈0,b〈o,则经234象限;当k〈0,b〉0时,则经124象限;当k〉0,b〈0时,则经134象限;当k〉0,b〉0时,则经123象限。④当k〉0时,y的值随x值的增大而增大,当x〈0时,y的值随x值的增大而减少。<br><br>二、空间与图形<br>a:图形的认识:1:点,线,面<br>点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。<br>展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②n棱柱就是底面图形有n条边的棱柱。<br>截一个几何体:用一个平面去截一个图形,截出的面叫做截面。<br>3视图:主视图,左视图,俯视图。<br>多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。<br>弧,扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。<br>2:角<br>线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。<br>比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。<br>角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。<br>角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。<br>平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。<br>垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。<br>3:相交线与平行线<br>角:①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。②同角或等角的余角/补角相等。③对顶角相等。④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。<br>4:三角形<br>三角形:①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。②三角形任意两边之和大于第三边。三角形任意两边之差小于第三边。③三角形三个内角的和等于180度。④三角形分锐角三角形/直角三角形/钝角三角形。⑤直角三角形的两个锐角互余。⑥三角形中一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线。⑧三角形的三条角平分线交于一点,三条中线交于一点。⑨从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。⑩三角形的三条高所在的直线交于一点。<br>图形的全等:全等图形的形状和大小都相同。两个能够重合的图形叫全等图形。<br>全等三角形:①全等三角形的对应边/角相等。②条件:sss/aas/asa/sas/hl。<br>勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。<br>5:四边形<br>平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。②平行四边形不相邻的两个顶点连成的线段叫他的对角线。③平行四边形的对边/对角相等。④平行四边形的对角线互相平分。<br>平行四边形的判定条件:两条对角线互相平分的四边形/一组对边平行且相等的四边形/两组对边分别相等的四边形/定义。<br>菱形:①一组邻边相等的平行四边形是菱形。②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。<br>矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。②矩形的对角线相等,四个角都是直角。③对角线相等的平行四边形是矩形。④正方形具有平行四边形,矩形,菱形的一切性质。⑤一组邻边相等的矩形是正方形。<br>梯形:①一组对边平行而另一组对边不平行的四边形叫梯形。②两条腰相等的梯形叫等腰梯形。③一条腰和底垂直的梯形叫做直角梯形。④等腰梯形同一底上的两个内角相等,对角线星等,反之亦然。<br>多边形:①n边形的内角和等于(n-2)180度。②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)<br>平面图形的密铺:三角形,四边形和正六边形可以密铺。<br>中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。<br>b:图形与变换:1:图形的轴对称<br>轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。<br>轴对称图形:①角的平分线上的点到这个角的两边的距离相等。②线段垂直平分线上的点到这条线段两个端点的距离相等。③等腰三角形的“三线合一”。<br>轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。<br>2:图形的平移和旋转<br>平移:①在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。<br>旋转:①在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。②经过旋转,图形商店每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。<br>3:图形的相似<br>比:①a/b=c/d,那么ad=bc,反之亦然。②a/b=c/d,那么a土b/b=c土d/d。③a/b=c/d=。。。=m/n,<br>那么a+c+。。。+m/b+d+。。。n=a/b。<br>黄金分割:点c把线段ab分成两条线段ac与bc,如果ac/ab=bc/ac,那么称线段ab被点c黄金分割,点c叫做线段ab的黄金分割点,ac与ab的比叫做黄金比(根号5-1/2)。<br>相似:①各角对应相等,各边对应成比例的两个多边形叫做相似多边形。②相似多边形对应边的比叫做相似比。<br>相似三角形:①三角对应相等,三边对应成比例的两个三角形叫做相似三角形。②条件:aa/sss/sas。<br>相似多边形的性质:①相似三角形对应高,对应角平分线,对应中线的比都等于相似比。②相似多边形的周长比等于相似比,面积比等于相似比的平方。<br>图形的放大与缩小:①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。②位似图形上任意一对对应点到位似中心的距离之比等于位似比。<br>c:图形的坐标<br>平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴与y轴统称坐标轴,他们的公共原点o称为直角坐标系的原点。他们分4个象限。xa,yb记作(a,b)。<br>d:证明<br>定义与命题:①对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。②对事情进行判断的句子叫做命题(分真命题与假命题)。③每个命题是由条件和结论两部分组成。④要说明一个命题是假命题,通常举出一个离子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。<br>公理:①公认的真命题叫做公理。②其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。③同位角相等,两直线平行,反之亦然;sas/asa/sss,反之亦然;同旁内角互补,两直线;平行,反之亦然;内错角相等,两直线平行,反之亦然;三角形三个内角的和等于180度;三角形的一个外交等于和他不相邻的两个内角的和;三角心的一个外角大于任何一个和他不相邻的内角。④由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。</p> <p>&nbsp;</p> <p>&nbsp;</p> <p>&nbsp;</p> <p>&nbsp;</p> <p>&nbsp;b.直角三角形(简称rt 三角形):<br><br>    ⑴直角三角形两个锐角互余; <br><br>    ⑵直角三角形斜边上的中线等于斜边的一半; <br><br>    ⑶在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半.; <br><br>    ⑷在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°(和⑶相反); <br><br>    c.钝角三角形:有一个角大于90度(锐角三角形,钝角三角形统称斜三角形)。<br><br>    d.证明全等时可用hl方法<br><br>     (2)按角分  <br><br>  a.锐角三角形:三个角都小于90度 。<br><br>    b.直角三角形:有一个角等于90度。<br><br>    c.钝角三角形:有一个角大于90度。<br><br>     (3)按边分<br><br>    等腰三角形:有两条边相等。 等边三角形(也叫正三角形):三条边相等<br><br>  三角形的性质  <br><br>  1.三角形的任何两边的和一定大于第三边 ,由此亦可证明得三角形的任意两边的差一定小于第三边。<br><br>    2.三角形内角和等于180度 <br><br>    3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。<br><br>    4.直角三角形的两条直角边的平方和等于斜边的平方--勾股定理。直角三角形斜边的中线等于斜边的一半。<br><br>    5.三角形的外角(三角形内角的一边与其另一边的延长线所组成的角)等于与其不相邻的两个内角之和。 <br><br>    6.一个三角形最少有2个锐角。<br><br>    7.三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段。<br><br>    8.等腰三角形中,等腰三角形顶角的平分线平分底边并垂直于底边。<br><br>    9.勾股定理逆定理:如果三角形的三边长a,b,c有下面关系那么a^2+b^2=c^2。<br><br>    那么这个三角形就一定是直角三角形。<br><br>    10.三角形的外角和是360°。<br><br>    11.等底等高的三角形面积相等。<br><br>    12.底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。<br><br>    13.三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。<br><br>    14.在△abc中恒满足tanatanbtanc=tana+tanb+tanc。<br><br>    15.三角形的一个外角大于任何一个与它不相邻的内角。<br><br>    16.全等三角形对应边相等,对应角相等。<br><br>  三角形的面积公式  <br><br>  (1)s△=1/2*ah(a是三角形的底,h是底所对应的高)</p> <p>平行四边形<br><br>  定义   (1)如果一个四边形是平行四边形,那么这个平行四边形的一组对边平行且相等。 <br><br>    (简述为“平行四边形的对边平行且相等”)<br><br>    (2)如果一个四边形是平行四边形,那么这个平行四边形的两组对边分别平行。<br><br>    (简述为“平行四边形的对边平行”)<br><br>    (3)如果一个四边形是平行四边形,那么这个平行四边形的两组对边分别相等。<br><br>    (简述为“平行四边形的对<b>边相等</b>”)<br><br>    (4)如果一个四边形是平行四边形,那么这个平行四边形的两组对角分别相等。<br><br>    (简述为“平行四边形的对角相等”)<br><br>    (5)如果一个四边形是平行四边形,那么这个平行四边形的两条对角线互相平分。<br><br>    (简述为“平行四边形的两条对角线互相平分”)<br><br>    (6)平行四边形是中心对称图形,对称中心是两条对角线的交点。<br><br>    (7)一般的平行四边形不是轴对称图形。 <br><br>  判定   (1)两组对边分别相等的四边形是平行四边形。<br><br>    (2)对角线互相平分的四边形是平行四边形。<br><br>    (3)一组对边平行且相等的四边形是平行四边形。<br><br>    (4)两组对边分别平行的四边形是平行四边形。<br><br>    (5)两组对角分别相等的四边形是平行四边形。(不可直接<b>证明</b>为平行四边形) <br><br>  性质   (1)连接任意四边形各边的中点所得图形是平行四边形。<br><br>    (2)平行四边形的对角相等,两邻角互补。<br><br>    (3)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。<br><br>    (4)平行四边形是中心对称图形,对称中心是两对角线的交点。 <br><br>    (5)平行四边形的面积等于底和高的积。(可视为矩形)<br><br>    (6)平行四边形abcd中(如图)e为ab的中点,则ac和de互相三等分,<br><br>    一般地,若e为ab上靠近a的n等分点,则ac和de互相(n+1)等分。<br><br>  *****************分*******************界************************线****************************<br><br>  梯形等腰梯形的性质  <br><br>  1.等腰梯形的两条腰相等<br><br>    2.等腰梯形在同一底上的<b>两个</b>底角相等<br><br>    3.等腰梯形的两条对角线相等<br><br>    4.等腰梯形是轴对称图形,对称轴是上下底中点的连线所在直线<br>-------这里还有很多:自己看看</p> <p><a href="http://wenwen.soso.com/z/urlalertpage.e?sp=shttp%3a%2f%2fwww.daxue1g.cn%2fzhishibaike%2f201005%2f23955.html" target="_blank">http://www.daxue1g.cn/zhishibaike/201005/23955.html</a></p>
等边对等角.两直线平行,内错角相等,同位角相等.(补充:三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半.)全等三角形,相似三角形对应角相等.对顶角相等.三角形的外角等于不相邻的两个内角之和.同角或等角的补角相等.同角或等角的余角相等.平行四边形的对角相等.在同圆或等圆中,同弧或等弧对的圆周角相等,圆心角相等.半圆上的圆周角是直角,弦切角等于所对弧的圆周角.同弧上的圆周角相等.

文章TAG:对等符号怎么打对等  符号  怎么  
下一篇