本文目录一览

1,数学建模中有什么好的数据处理方法尤其是量大的数据

运用Excel对数据进行筛选,处理并计算

数学建模中有什么好的数据处理方法尤其是量大的数据

2,数学建模中什么情况下先对数据进行预处理

数据单位不统一
不明白啊 = =!

数学建模中什么情况下先对数据进行预处理

3,数学建模构造相对偏差矩阵R数据标准化 遇到的问题里有方便不

设成1,0,-1好些,方便是1,不方便是-1,一般是0,这样的话根据结果的正负就能做出判断,而且方便计算

数学建模构造相对偏差矩阵R数据标准化 遇到的问题里有方便不

4,数学建模文本型数据怎样适当转化为数据

看看你数据量有多大,如果数据量大占缺失数据占比不大的话,那就做个灰色把数据补上就行,如果数据量很少,还缺失数据的话,没办法,不管怎么处理都会加大误差,反正都是要补齐数据的,你就灰色补齐就行了,如果时间性不强,就指数平滑或者移动平均
你是指数据标准化还是?我可以给出一种标准化方法:每个数据的标准值=(数据-数据的最小值)/(数据的最大值-数据的最小值)【不过前提是你知道所给数据的可取范围】

5,MATLAB怎么进行数学建模

一、数学建模的一般步骤 数学建模并不是新东西,粗略地说, 数学建模是一个多次迭代的过程,每一次 迭代大体上包括:实际问题的抽象、简化, 做出假设,明确变量和参数;形成明确的 数学问题;以解析形式或者数值形式求解 该数学模型;对结果进行解释、分析以及 验证;若符合实际即可,不符合实际则要 进行修改,进入下一个迭代。其一般过程 如图 1所示。第一,模型准备。 了解实际背景,明确建 模目的,搜集有关信息, 掌握对象特征,形成一 个比较清晰的 “问题”。 第二,模型假设。针对问题特点和建模目 的,做出合理的、简化的假设。在合理与 简化之间作出折中。对数据资料进行分 析计算,找出起主要作用的因素,经过必 要的精炼、简化,提出若干符合客观实际 的假设。第三,模型构成。用数学的语言、 符号描述问题。发挥想象力,使用类比 法。尽量采用简单的、适当的数学工具表 达各变量之间的关系,建立相应的数学 结构,即建立数学模型。第四,模型求解。 利用各种数学方法、数学软件和计算机 技术。在难以得出解析解时,借助计算机 求出数值解。第五,模型分析。结果的误 差分析、模型对数据的稳定性分析。第 六,模型检验。与实际现象、数据比较,检 验模型的合理性、适用性。第七,模型应 用。通过检验,模型与实际相符后,投入 实际应用,解决实际问题。
matlab有什么样的功能,数学建模大多都可用到,譬如象简单的计算,模拟,画图等功能,在数学建模中的作用非常大,至于更复杂的系统仿真等功能有时也会在建模题中用到。可以这样说,要想做好数学建模,就不开matlab的支持。 一、数学建模的一般步骤 数学建模并不是新东西,粗略地说, 数学建模是一个多次迭代的过程,每一次 迭代大体上包括:实际问题的抽象、简化, 做出假设,明确变量和参数;形成明确的 数学问题;以解析形式或者数值形式求解 该数学模型;对结果进行解释、分析以及 验证;若符合实际即可,不符合实际则要 进行修改,进入下一个迭代。其一般过程 如图 1所示。 第一,模型准备。 了解实际背景,明确建 模目的,搜集有关信息, 掌握对象特征,形成一 个比较清晰的 “问题”。 第二,模型假设。针对问题特点和建模目 的,做出合理的、简化的假设。在合理与 简化之间作出折中。对数据资料进行分 析计算,找出起主要作用的因素,经过必 要的精炼、简化,提出若干符合客观实际 的假设。第三,模型构成。用数学的语言、 符号描述问题。发挥想象力,使用类比 法。尽量采用简单的、适当的数学工具表 达各变量之间的关系,建立相应的数学 结构,即建立数学模型。第四,模型求解。 利用各种数学方法、数学软件和计算机 技术。在难以得出解析解时,借助计算机 求出数值解。第五,模型分析。结果的误 差分析、模型对数据的稳定性分析。第 六,模型检验。与实际现象、数据比较,检 验模型的合理性、适用性。第七,模型应 用。通过检验,模型与实际相符后,投入 实际应用,解决实际问题。二、matlab在数学建模中的应用举例 正因为 matlab这一数学软件能够非 常方便、快捷、高效地解决数学建模所涉 及的众多实际问题,因此,matlab在数学 建模中为许多建模工作者重视。 1:(包含无风险证券的投资组合问题) 金融市场上有两种证券:风险证券和 无风险证券。我们一般称风险证券为股 票,其收益率不确定;无风险证券称为债 券,其收益率是确定的。通常情况下,无风 险利率也可以认为是国有银行的存货款 利率。三、结论 从以上优化问题和高等统计学问题 这两个实例中,可以看出 matlab在数学建 模中的巨大优势,充分显现出了其强大的 数值计算、数据处理和图形处理功能,无 论是在建立模型的哪个阶段,matlab都有 其他语言无法比拟的高效、快捷、方便的 功能,大大提高了数学建模的效率,丰富 了数学建模的方法和手段,有力地促进了 问题的解决。另外,将 matlab应用于实际 的教学过程中,可以激发学员学习数学的 兴趣和热情,从而提高学员运用所学数学 知识分析、解决实际问题的能力。

6,数学建模的解答

数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathemathmatica,Matlab,Mapple,甚至排版软件等。
很复杂

7,数学建模步骤

摘要摘要在整篇论文评阅中占有重要权重,务必认真书写(篇幅不能超过一页)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。摘要写得不好,论点不明,条理不清,评委不再阅读正文,论文即遭被淘汰。摘要是全文的精华,摘要应当点明: (1) 模型的数学归类(数学上属于什么类型,如动态规划,微分方程稳定性等)(2) 建模的思想(思路)(3) 算法思想(求解思路)(4) 模型特色(模型优缺点,算法特点,结果检验,灵敏度分析,模型检验等)(5) 主要结果(数值结果,结论)(回答题目所问的全部“问题”)注意表述一定要准确、简明、通顺、工整,务必认真校对。1. 问题重述把原问题简单重述一遍,但不是照搬,而是从数学的角度重新表述。2. 模型假设根据评卷原则,基本假设的合理性占重要比重。应当根据题目中的条件和要求作出合理假设,假设要切合题意,关键性假设不能缺。3. 模型的建立(1)数学建模是用数学方法解决问题,首先要有数学模型:数学公式、方程、方案等;要求完整,正确,简明(2)模型要实用,有效,以解决问题有效为原则,不追求数学上的高(级)、难(度大)。能用初等方法解决的、就不用高级方法;能用简单方法解决的,就不用复杂方法;能用被多数人理解的方法,就不用只有少数人能理解的方法。(3)鼓励创新,但要切合实际。数模创新可体现在模型中(好思想、好方法、好策略等);模型求解中(好算法、好步骤、好程序);结果表示中(醒目、图表、分析、检验等);模型推广中。4. 模型求解(1) 需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。(2) 需要说明算法的原理、依据、步骤。若用现有软件,要说明理由,软件名称。(3) 计算过程,中间结果可要可不要的,不必列出。(4) 设法算出合理的数值结果。5.模型的结果(1) 最终数值结果的正确性或合理性是第一位的;(2) 对数值结果或模拟结果须进行必要的检验。结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进;(3) 题目中要求回答的问题,数值结果,结论,必须一一列出; (4) 考虑是否需要列出多组数据,对数据进行比较、分析,为各种方案的提出提供依据;(5) 结果的表示要集中,醒目,直观,便于比较分析 (6) 必要时对问题解答,作定性或规律性的讨论。最后结论要明确。6.模型评价(1)说明特色,优点突出,缺点不回避。(2)改变原题要求,重新建模可在此做。(3)推广或改进方向时,要合理、可行,不要玩弄新数学术语。7.参考文献按规定列出。8.附录(1)主要结果数据,应在正文中列出。(2)数据、表格,可在此列出,但不要错,错的宁可不列。
原发布者:okluck媛媛数学建模的主要步骤:第一、模型准备  首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。第二、模型假设  根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。第三、模型构成  根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。第四、模型求解  可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。第五、模型分析  对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不
摘要是全文的精华,摘要应当点明: (1) 模型的数学归类(数学上属于什么类型,如动态规划,微分方程稳定性等)(2) 建模的思想(思路)(3) 算法思想(求解思路)(4) 模型特色(模型优缺点,算法特点,结果检验,灵敏度分析,模型检验等)(5) 主要结果(数值结果,结论)(回答题目所问的全部“问题”)注意表述一定要准确、简明、通顺、工整,务必认真校对。1. 问题重述把原问题简单重述一遍,但不是照搬,而是从数学的角度重新表述。2. 模型假设根据评卷原则,基本假设的合理性占重要比重。应当根据题目中的条件和要求作出合理假设,假设要切合题意,关键性假设不能缺。3. 模型的建立4.模型求解5.模型的结果6.模型评价 7.参考文献8.附录
数学建模关键是提炼数学模型,所谓提炼数学模型,就是运用科学抽象法,把复杂的研究对象转化为数学问题,经合理简化后,建立起揭示研究对象定量的规律性的数学关系式(或方程式)。这既是数学方法中最关键的一步,也是最困难的一步。提炼数学模型,一般采用以下六个步骤完成: 第一步:根据研究对象的特点,确定研究对象属哪类自然事物或自然现象,从而确定使用何种数学方法与建立何种数学模型。即首先确定对象与应该使用的数学模型的类别归属问题,是属于“必然”类,还是“随机”类;是“突变”类,还是“模糊”类。 第二步:确定几个基本量和基本的科学概念,用以反映研究对象的状态。这需要根据已有的科学理论或假说及实验信息资料的分析确定。例如在力学系统的研究中,首先确定的摹本物理量是质主(m)、速度(v)、加速度(α)、时间(t)、位矢(r)等。必须注意确定的基本量不能过多,否则未知数过多,难以简化成可能数学模型,因此必须诜择出实质性、关键性物理量才行。 第三步:抓住主要矛盾进行科学抽象。现实研究对象是复杂的,多种因素混在一起,因此,必须变复杂的研究对象为简单和理想化的研究对象,做到这一点相当困难,关键是分清主次。如何分清主次只能具体问题具体分析,但也有两条基本原则:一是所建数学模型一定是可能的,至少可给出近似解;二是近似解的误差不能超过实际问题所允许的误差范围。 第四步:对简化后的基本量进行标定,给出它们的科学内涵。即标明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是标量,这些量的物理含义是什么? 第五步:按数学模型求出结果。 第六步:验证数学模型。验证时可根据情况对模型进行修正,使其符合程度更高,当然这以求原模型与实际情况基本相符为原则。

文章TAG:数学建模怎么处理数据数学  数学建模  建模  
下一篇