1,聚酯纤维的涤纶改性

涤纶和天然纤维相比存在含水率低、透气性差、染色性差、容易起球起毛、易沾污等缺点。为了改善这些缺点,采取化学改性和物理变形的方法。化学改性方法有:①添加有亲水基团的单体或低聚体聚乙二醇等进行共聚,能提高纤维的吸湿率;②添加具有抗静电性能的单体进行共聚,可以提高纤维的抗静电和抗沾污性能;③添加含磷、含卤素和锑的化合物以改善纤维耐燃烧性能;④采用较低聚合度的聚酯纺丝以提高抗起球能力;⑤与亲染料基团的单体(如磺酸盐等)进行共聚,以改善纤维的染色性能。经过物理变形的有各种异形涤纶、与其他高聚物复合纺丝、着色的涤纶、细旦涤纶和高收缩涤纶等。

聚酯纤维的涤纶改性

2,纤维素生产乙醇的化学预处理法

(1)原料预处理天然纤维素材料的结构性质非常复杂,主要是纤维素的高度结晶性和木质化,阻碍了酶与纤维素的接触,使其难以直接被生物降解。对大多数天然纤维素材料来说,直接进行酶促水解,酶解率一般都非常低(<20%),因此必须对原料进行适当预处理,以破坏木质纤维素结构,释放出纤维素和半纤维素。木质纤维素分子内和分子间存在氢键,聚集态结构复杂且结晶度高、反应活性低。其含有的木质素和半纤维素在空间上可阻碍甚至封闭纤维素分子与酶或化学试剂的接触,酶可及度差,更增加了水解的难度。通过预处理脱除木质素和半纤维素,消除空间障碍,降低纤维素的聚合度和结晶度,同时避免或消除不利于酶解和发酵的因素,有利于纤维素的降解和发酵生产乙醇。木质纤维素生物质的预处理方法主要有:物理处理法可破坏木质纤维素生物质的物理结构,降低结晶度,包括球磨、剪切、挤压等,其中最有效的是球磨,但因能耗高而很少采用。稀酸处理法用稀酸在较低的温度下处理木质纤维素生物质,可降解其半纤维素,生成单糖和可溶性低聚糖,提高原料的酶可及度及纤维素的可消化性。该法效果较好、成本较低,已得到广泛应用。尤其用于将半纤维素中的木聚糖转化为木糖,再经微生物发酵生产乙醇。碱处理法用NaOH、Ca(OH)2等碱性试剂处理木质纤维素生物质,脱除木质素,提高纤维素的酶可及度。预处理对酶解糖化效率和乙醇生产成本影响极大。湿法氧化处理法指水、氧化剂等在高温、一定压力下氧化降解木质纤维素生物质的过程。碱性条件可防止纤维素破坏,使木质素和半纤维素溶于碱液,与纤维素分离,且形成的糠醛等副产物较少。蒸汽爆碎处理法该法是比较有效、低成本和无污染的新技术。向装有木质纤维素生物质的压力罐通入高压蒸汽,使罐温度达到200~240℃左右,维持较短时间(30s~20min)后,突然减压将物料喷出,使物料爆碎。在高温条件下,原料中的半纤维素会迅速分解释放出有机酸,进而发生自水解作用而溶化。细胞间的木质素也能出现熔化,并发生部分降解,变得易被热水、有机溶剂或稀碱抽提。加上突然减压爆碎的机械分离作用,使植物细胞间质或细胞壁变疏松,细胞游离,纤维素的可消化性明显增强。

纤维素生产乙醇的化学预处理法

3,纤维什么结构会影响纤维的物理机械性质和化学性质

纤维(美:Fiber;英:Fibre)是指由连续或不连续的细丝组成的物质。在动植物体内,纤维在维系组织方面起到重要作用。纤维用途广泛,可织成细线、线头和麻绳,造纸或织毡时还可以织成纤维层;同时也常用来制造其他物料,及与其他物料共同组成复合材料。
粘胶纤维属再生纤维素纤维。它是以天然纤维素为原料。粘胶纤维,人造纤维的一个主要品种。由天然纤维素经碱化而成碱纤维素,再与二硫化碳作用生成纤维素黄原酸酯,溶解于稀碱液内得到的粘稠溶液称粘胶,粘胶经湿法纺丝和一系列处理工序后即成粘胶纤维。粘胶纤维(viscose fiber),是粘纤的全称。它又分为粘胶长丝和粘胶短纤。粘纤——又叫人造丝、冰丝。2000年后,粘纤又出现了一种名为天丝、竹纤维的高档新品种。粘纤是以棉或其它天然纤维为原料生产的纤维素纤维。在12种主要纺织纤维中,粘纤的含湿率最符合人体皮肤的生理要求,具有光滑凉爽、透气、抗静电、染色绚丽等特性。特点粘胶纤维的基本组成是纤维素 (c6h10o5)n o普通粘胶纤维的截面呈锯齿形皮芯结构,纵向平直有沟横。而富纤无皮芯结构,截面呈圆形。粘胶纤维具有良好的吸湿性,在一般大气条件下,回潮率在13%左右。吸湿后显著膨胀,直径增加可达50%,所以织物下水后手感发硬,收缩率大。普通粘胶纤维的断裂强度比棉小,约为1.6~2.7cn/dtex;断裂伸长率大于棉,为16%~22%;湿强下降多,约为干强的50%,湿态伸长增加约50%。其模量比棉低,在小负荷下容易变形,而弹性回复性能差,因此织物容易伸长,尺寸稳定性差。富纤的强度特别是湿强比普通粘胶高,断裂伸长率较小,尺寸稳定性良好。普通粘胶的耐磨性较差,而富纤则有所改善。粘胶纤维的化学组成与棉相似,所以较耐碱而不耐酸,但耐碱耐酸性均较棉差。富纤则具有良好的耐碱耐酸性。同样粘胶纤维的染色性与棉相似,染色色谱全,染色性能良好。此外粘胶纤维的热学性质也与棉相似,密度接近棉为1.50~1.52g/cm3。纤维素的大分子的羟基易于发生多种化学反应,因此,可通过接枝等方法,对粘胶纤维进行改性,提高粘胶纤维性能,并生产出各种特殊用途的纤维。普通粘胶纤维吸湿性好,易于染色,不易起静电,有较好的可纺性能。短纤维可以纯纺,也可以与其他纺织纤维混纺,织物柔软、光滑、透气性好,穿着舒适,染色后色泽鲜艳、色牢度好。适宜于制做内衣、外衣和各种装饰用品。长丝织物质地轻薄,除适用作衣料外还可织制被面和装饰织物。这类粘胶纤维的缺点是牢度较差,湿模量较低,缩水率较高而且容易变形,弹性和耐磨性较差。

纤维什么结构会影响纤维的物理机械性质和化学性质

4,转移印花的存在问题

分散染料转移印花也用于天然纤维,为了使分散染料升华后可吸附、扩散及固着在天然纤维纺织品上,印花前必须对纺织品进行预处理,包括化学改性和预溶胀处理。一般来说,这种预处理后分散染料可以上染天然纤维,但牢度和颜色鲜艳度不如聚酯纤维织物,需要仔细选用染料或开发新的分散染料。此法另一不足之处是印花前需要经过预处理,不仅增加了一道加工工序,预处理也存在许多生态问题,例如处理剂的毒性危害,耗能耗水,会产生污水等。活性染料等一些离子型染料湿态转移印花也在研究并获得应用,不足之处也是要耗费大量的转移纸,印花后还经过水洗,在耗水同时又产生污水。涂料转移印花后不需焙烘和水洗,无污水排放,但是对颜料和粘合剂有较高要求,也需要大量的转移纸。
转移印花是先将染料色料印在转移印花纸上,然后在转移印花时通过热处理使图案中染料转移到纺织品上,并固着形成图案。目前使用较多的转移印花方法是利用分散染料在合成纤维织物上用干法转移。这种方法是先选择合用的分散染料与糊料、醇、苯等溶剂与树脂研磨调成油墨,印在坚韧的纸上制成转印纸。印花时,将转印纸上有花纹的一面与织物重叠,经过高温热压约1min,则分散染料升华变成气态,由纸上转移到织物上。印花后不需要水洗处理,因而不产生污水,可获得色彩鲜艳、层次分明、花形精致的效果。但是存在的生态问题除了色浆中的染料和助剂外还需大量的转移纸,这些转移纸印后很难再回收利用。转移印花以在纯涤纶织物上的效果最好,涤棉混纺织物上因棉纤维不被分散染料着色,得色要比纯涤纶织物浅,块面大的花形还有“雪花”(留白)现象。纯锦纶织物也能转移印花,但得色量较低,湿处理牢度较差。转移印花法消耗的转印纸为织物长度2倍,废纸及印后残留染料难以回收,且印深色有困难,故多应用于部分织物如变形丝织物和针织物进行局部印花,以及一些装饰性的印花。近年来,分散染料转移印花也用于天然纤维,为了使分散染料升华后可吸附、扩散及固着在天然纤维纺织品上,印花前必须对纺织品进行预处理,包括化学改性和预溶胀处理。一般来说,这种预处理后分散染料可以上染天然纤维,但牢度和颜色鲜艳度不如聚酯纤维织物,需要仔细选用染料或开发新的分散染料。此法另一不足之处是印花前需要经过预处理,不仅增加了一道加工工序,预处理也存在许多生态问题,例如处理剂的毒性危害,耗能耗水,会产生污水等。活性染料等一些离子型染料湿态转移印花也在研究并获得应用,不足之处也是要耗费大量的转移纸,印花后还经过水洗,在耗水同时又产生污水。涂料转移印花后不需焙烘和水洗,无污水排放,但是对颜料和粘合剂有较高要求,也需要大量的转移纸。来源于印染在线网站印花技术专栏。

5,简述高分子材料的结构与性能及其之间的关系

http://202.203.132.30/jpkc/mg/kcq/a8.ppt#310,50,幻灯片 50 以高分子化合物为基础的材料。包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料。高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1907年出现合成高分子酚醛树脂,标志着人类应用合成高分子材料的开始。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。高分子材料的结构决定其性能,对结构的控制和改性,可获得不同特性的高分子材料。高分子材料独特的结构和易改性、易加工特点,使其具有其他材料不可比拟、不可取代的优异性能,从而广泛用于科学技术、国防建设和国民经济各个领域,并已成为现代社会生活中衣食住行用各个方面不可缺少的材料。分类 高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料。①橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和合成橡胶两种。②高分子纤维分为天然纤维和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。③塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。通常按合成树脂的特性分为热固性塑料和热塑性塑料;按用途又分为通用塑料和工程塑料。④高分子胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。分为天然和合成胶粘剂两种。应用较多的是合成胶粘剂。⑤高分子涂料是以聚合物为主要成膜物质,添加溶剂和各种添加剂制得。根据成膜物质不同,分为油脂涂料、天然树脂涂料和合成树脂涂料。⑥高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。它综合了原有材料的性能特点,并可根据需要进行材料设计。利用高分子材料制造的塑料制品此外,高分子材料按用途又分为普通高分子材料和功能高分子材料。功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息的转换、传递和储存等特殊功能。已实用的有高分子信息转换材料、高分子透明材料、高分子模拟酶、生物降解高分子材料、高分子形状记忆材料和医用、药用高分子材料等。加工工艺 高分子材料的加工成型不是单纯的物理过程,而是决定高分子材料最终结构和性能的重要环节。除胶粘剂、涂料一般无需加工成形而可直接使用外、橡胶、纤维、塑料等通常须用相应的成形方法加工成制品。一般塑料制品常用的成形方法有挤出、注射、压延、吹塑、模压或传递模塑等。橡胶制品有塑炼、混炼、压延或挤出等成形工序。纤维有纺丝溶体制备、纤维成形和卷绕、后处理、初生纤维的拉伸和热定型等。在成型过程中,聚合物有可能受温度、压强、应力及作用时间等变化的影响,导致高分子降解、交联以及其他化学反应,使聚合物的聚集态结构和化学结构发生变化。因此加工过程不仅决定高分子材料制品的外观形状和质量,而且对材料超分子结构和织态结构甚至链结构有重要影响。
高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料

6,聚酯纤维在建筑工程方面有哪些用途

聚酯纤维在建筑工程中一般用于防水工程及保温工程,作为上述材料的基体。防水混凝土中也有掺加纤维的种类,增强混凝土抗裂效果。
聚酯纤维  聚酯纤维聚酯纤维(polyester fibre)由有机二元酸和二元醇缩聚而成的聚酯经纺丝所得的合成纤维。工业化大量生产的聚酯纤维是用聚对苯二甲酸乙二醇酯制成的,中国的商品名为涤纶。是当前合成纤维的第一大品种。  简介  性能  用途  涤纶改性  制造  聚酯纤维简介  聚酯加强纤维介绍  聚酯加强纤维主要功能  主要用途简介  性能  用途  涤纶改性  制造  聚酯纤维简介  聚酯加强纤维介绍  聚酯加强纤维主要功能  1941年,英国的j.r.温菲尔德和j.t.迪克森以对苯二甲酸和乙二醇为原料在实验室内首先研制成功聚酯纤维,命名为特丽纶(terylene)。1953年美国生产商品名为达可纶(dacron)的聚酯纤维。随后聚酯纤维在世界各国得到迅速发展。1960年聚酯纤维的世界产量超过聚丙烯腈纤维,1972年又超过聚酰胺纤维,成为合成纤维的第一大品种。  [编辑本段]性能  涤纶的比重为1.38;熔点255~260℃,在205℃时开始粘结,安全熨烫温度为135℃;吸湿度很低,仅为0.4%;长丝的断裂强度为4.5~5.5克/旦,短纤维为3.5~5.5克/旦;长丝的断裂伸长率为15~25%,短纤维为25~40%;高强型纤维强度可达7~8克/旦,伸长为7.5~12.5%。涤纶有优良的耐皱性、弹性和尺寸稳定性,有良好的电绝缘性能,耐日光,耐摩擦,不霉不蛀,有较好的耐化学试剂性能,能耐弱酸及弱碱。在室温下,有一定的耐稀强酸的能力,耐强碱性较差。涤纶的染色性能较差,一般须在高温或有载体存在的条件下用分散性染料染色。  涤纶具有许多优良的纺织性能和服用性能,用途广泛,可以纯纺织造,也可与棉、毛、丝、麻等天然纤维和其他化学纤维混纺交织,制成花色繁多、坚牢挺刮、易洗易干、免烫和洗可穿性能良好的仿毛、仿棉、仿丝、仿麻织物。涤纶织物适用于男女衬衫、外衣、儿童衣着、室内装饰织物和地毯等。由于涤纶具有良好的弹性和蓬松性,也可用作絮棉。在工业上高强度涤纶可用作轮胎帘子线、运输带、消防水管、缆绳、渔网等,也可用作电绝缘材料、耐酸过滤布和造纸毛毯等。用涤纶制作无纺织布可用于室内装饰物、地毯底布、医药工业用布、絮绒、衬里等。  涤纶改性  涤纶和天然纤维相比存在含水率低、透气性差、染色性差、容易起球起毛、易沾污等缺点。为了改善这些缺点,采取化学改性和物理变形的方法。化学改性方法有:①添加有亲水基团的单体或低聚体聚乙二涤纶醇等进行共聚,能提高纤维的吸湿率;②添加具有抗静电性能的单体进行共聚,可以提高纤维的抗静电和抗沾污性能;③添加含磷、含卤素和锑的化合物以改善纤维耐燃烧性能;④采用较低聚合度的聚酯纺丝以提高抗起球能力;⑤与亲染料基团的单体(如磺酸盐等)进行共聚,以改善纤维的染色性能。  制造  涤纶的生产过程包括缩聚和熔体纺丝两部分。原料主要从石油裂解获得,也可从煤和天然气取得。石油加热裂解得到甲苯、二甲苯和乙烯等,经化学加工后可得到对苯二甲酸或对苯二甲酸二甲酯及乙二醇。在早期涤纶生产中由于对苯二甲酸不易精制,曾用对苯二甲酸二甲酯和乙二醇为原料。1965年对苯二甲酸的精制获得成功,使涤纶生产工序减少,成本降低。用对苯二甲酸和乙二醇为原料生产的涤纶逐年都有增加。缩聚:将对苯二甲酸二甲酯和乙二醇进行酯交换,生成的对苯二甲酸乙二酯,在270~290℃和真空条件下缩聚而得聚对苯二甲酸乙二酯;或将对苯二甲酸与乙二醇直接酯化,然后对苯二甲酸乙二酯进行缩聚获得合成纤维聚合物。熔体纺丝:有切片纺丝法和直接纺丝法两种。切片纺丝是将缩聚后的高聚物熔体经铸带、切粒而得到切片,再经过干燥、熔融而纺丝。熔融过程中,切片所含的水分能使聚酯发生水解而影响纺丝性能和纤维质量,因此在纺丝前必须经过干燥,使切片含水率降低到0.01%以下。直接纺丝则将高聚物熔体干燥后的涤纶切片在螺杆中加热熔融,挤压送入纺丝箱体的各个纺丝部位,由计量泵精确计量和过滤后,从喷丝板的小孔中喷出。喷丝孔的直径一般为0.25~0.30毫米。喷出的熔体细流,被冷却气流冷却凝固成丝条。 纺制短纤维时,多根线条集合在一起,经给湿上油后落入成丝桶。再经集束、拉伸、卷曲、热定形、切断等工序得到成品。 如在拉伸后经过一次180℃左右的紧张热定形,则可得到强度达到6克/旦以上、伸长率在30%以下的高强度、低伸长率短纤维。 在纺制长丝时,凝固成形的丝条经给湿上油后,即以 1000米/分左右的速度卷绕在筒管上。卷绕丝在双区热拉伸机上经拉伸而得到长丝,称为无拈无定形长丝,可直接用于织造或经变形加工而成变形丝。也可进一步经双层加拈机提高拈度,再经蒸汽热定形后供织造用。 高速纺丝卷绕 1970年以来发展了高速纺丝卷绕技术,为涤纶变形丝的发展创造了条件。纺丝卷绕的速度一般分为普通速、半高速、高速和超高速四种。卷绕速度在1800米/分以下为普通速;在1800~3000米/分称为半高速;在3000~5000米/分称为高速;6000米/分以上为超高速。工业化生产的高速纺丝卷绕速度已达到3000~3500米/分。高速纺丝卷绕因卷绕速度提高,在熔体细流从熔融态到固态的过程中,高分子处于较高的速度梯度场内,受到较高的张力而形成部分取向,因而卷绕丝称为预取向丝(poy)。预取向丝的取向度较高,高分子间的吸引力较大,纤维结构比较稳定,所以便于贮存和长途运输。预取向丝的条干均匀性和染色均匀性也都有所改善。 预取向丝在拉伸变形机上经拉伸和变形可制成变形纱,称为拉伸变形丝(dty)。因此高速纺丝不仅能提高产量,而且能缩短制造工序。 美国商品科代尔 (kodel)是已工业化生产的另一种聚酯纤维。它由对苯二甲酸与1,4-环己烷二甲醇缩聚而得的高聚物纺丝而成。与涤纶相比,比重较轻,为1.22,熔点较高为290~295℃,耐分解性能较强,纤维的强度和伸长率稍低。适宜与棉、毛等混纺,制成的织物弹性、手感、耐皱和抗起球性能较好,但强度和耐磨性较差。  聚酯纤维简介  指由多种二元醇和芳香族二元羧酸或其酯经缩聚生成的聚酯为原料所制得纤维的统称。 具体品种有:聚对苯二甲酸乙二酯纤维,聚对苯二甲酸丁二酯纤维,聚对苯二甲酸丙二酯纤维,聚对苯二甲酸-1,4-环己二甲酯纤维,聚-2,6-萘二酸乙二酯纤维,以及多种改性的聚对苯二甲酸乙二酯纤维(如:cdp,ecdp,eddp)等。 由于聚对苯二甲酸乙二酯纤维是其主要品种,故习称聚酯纤维即指这种纤维。这类纤维外观挺括,热稳定性好,但吸湿性稍差。它们主要用于制作各种衣着用品、床上用品、室内装饰用品等;个别品种如:聚2,6-萘二酸乙二酯纤维主要用于工业方面。  聚酯加强纤维介绍  聚酯纤维是以聚酯(pet,聚对苯二甲酸乙二醇酯)为主要原料,添加一定的功能母料,产品密度136g/cm3,可溶于苯酚一四氯乙烷、邻氯苯酚等溶剂,吸湿性极小,能耐酸,化学稳定性高与聚酰胺,且有良好的耐光性能。纤维在-40℃--+250℃的温度内不脆化、不变形,每根纤维都是独立的,与同时是石油产品的沥青有极强的吸附性,在介质中有良好的吸附性和分散性。当每吨沥青混合料掺入2250克纤维时,将有多达18亿根纤维以三维立体方式对混合料进行加强,提供巨大的内聚力,提高公路的质量和寿命。  聚酯加强纤维主要功能  提高道路质量、延长道路使用寿命 提高沥青混凝土的高温稳定性 提高沥青混凝土的低温抗裂性 提高沥青混凝土的抗疲劳特性 提高沥青混凝土的柔韧性、抗剥落性、抗磨耗性和水稳性 防止产生车辙和路面渠化 防止产生反射裂缝和温度裂缝 防止由于强压造成的路面坑洼  主要用途  保护桥石配筋或钢板不受侵蚀 沥青路面的薄层沥青混凝土罩面 钢结构桥铺设沥青土面层路石的修复和补筑 机场跑道与停机坪的加强 新建沥青路面面层聚酯纤维吸音板 旧沥青面罩层 旧水泥路面罩面 涂补、灌缝、路缘石 聚酯纤维除具有普通聚合物纤维细度大、强度高、易分散的特点,还具有突出的耐高温性能,可广泛应用于热拌合沥青混凝土工程,也可应用于高强混凝土的增强防裂,是理想的多功能增强材料。经国内多家权威机构检测,顺通聚酯纤维主要技术性能指标达到国外同类产品先进水平,另一家诚能聚酯纤维更是在价格和质量上走在国内的最前面.

7,聚酯纤维

聚酯纤维  聚酯纤维聚酯纤维(polyester fibre)由有机二元酸和二元醇缩聚而成的聚酯经纺丝所得的合成纤维。工业化大量生产的聚酯纤维是用聚对苯二甲酸乙二醇酯制成的,中国的商品名为涤纶。是当前合成纤维的第一大品种。  简介  性能  用途  涤纶改性  制造  聚酯纤维简介  聚酯加强纤维介绍  聚酯加强纤维主要功能  主要用途简介  性能  用途  涤纶改性  制造  聚酯纤维简介  聚酯加强纤维介绍  聚酯加强纤维主要功能  1941年,英国的J.R.温菲尔德和J.T.迪克森以对苯二甲酸和乙二醇为原料在实验室内首先研制成功聚酯纤维,命名为特丽纶(Terylene)。1953年美国生产商品名为达可纶(Dacron)的聚酯纤维。随后聚酯纤维在世界各国得到迅速发展。1960年聚酯纤维的世界产量超过聚丙烯腈纤维,1972年又超过聚酰胺纤维,成为合成纤维的第一大品种。  [编辑本段]性能  涤纶的比重为1.38;熔点255~260℃,在205℃时开始粘结,安全熨烫温度为135℃;吸湿度很低,仅为0.4%;长丝的断裂强度为4.5~5.5克/旦,短纤维为3.5~5.5克/旦;长丝的断裂伸长率为15~25%,短纤维为25~40%;高强型纤维强度可达7~8克/旦,伸长为7.5~12.5%。涤纶有优良的耐皱性、弹性和尺寸稳定性,有良好的电绝缘性能,耐日光,耐摩擦,不霉不蛀,有较好的耐化学试剂性能,能耐弱酸及弱碱。在室温下,有一定的耐稀强酸的能力,耐强碱性较差。涤纶的染色性能较差,一般须在高温或有载体存在的条件下用分散性染料染色。  涤纶具有许多优良的纺织性能和服用性能,用途广泛,可以纯纺织造,也可与棉、毛、丝、麻等天然纤维和其他化学纤维混纺交织,制成花色繁多、坚牢挺刮、易洗易干、免烫和洗可穿性能良好的仿毛、仿棉、仿丝、仿麻织物。涤纶织物适用于男女衬衫、外衣、儿童衣着、室内装饰织物和地毯等。由于涤纶具有良好的弹性和蓬松性,也可用作絮棉。在工业上高强度涤纶可用作轮胎帘子线、运输带、消防水管、缆绳、渔网等,也可用作电绝缘材料、耐酸过滤布和造纸毛毯等。用涤纶制作无纺织布可用于室内装饰物、地毯底布、医药工业用布、絮绒、衬里等。  涤纶改性  涤纶和天然纤维相比存在含水率低、透气性差、染色性差、容易起球起毛、易沾污等缺点。为了改善这些缺点,采取化学改性和物理变形的方法。化学改性方法有:①添加有亲水基团的单体或低聚体聚乙二涤纶醇等进行共聚,能提高纤维的吸湿率;②添加具有抗静电性能的单体进行共聚,可以提高纤维的抗静电和抗沾污性能;③添加含磷、含卤素和锑的化合物以改善纤维耐燃烧性能;④采用较低聚合度的聚酯纺丝以提高抗起球能力;⑤与亲染料基团的单体(如磺酸盐等)进行共聚,以改善纤维的染色性能。  制造  涤纶的生产过程包括缩聚和熔体纺丝两部分。原料主要从石油裂解获得,也可从煤和天然气取得。石油加热裂解得到甲苯、二甲苯和乙烯等,经化学加工后可得到对苯二甲酸或对苯二甲酸二甲酯及乙二醇。在早期涤纶生产中由于对苯二甲酸不易精制,曾用对苯二甲酸二甲酯和乙二醇为原料。1965年对苯二甲酸的精制获得成功,使涤纶生产工序减少,成本降低。用对苯二甲酸和乙二醇为原料生产的涤纶逐年都有增加。缩聚:将对苯二甲酸二甲酯和乙二醇进行酯交换,生成的对苯二甲酸乙二酯,在270~290℃和真空条件下缩聚而得聚对苯二甲酸乙二酯;或将对苯二甲酸与乙二醇直接酯化,然后对苯二甲酸乙二酯进行缩聚获得合成纤维聚合物。熔体纺丝:有切片纺丝法和直接纺丝法两种。切片纺丝是将缩聚后的高聚物熔体经铸带、切粒而得到切片,再经过干燥、熔融而纺丝。熔融过程中,切片所含的水分能使聚酯发生水解而影响纺丝性能和纤维质量,因此在纺丝前必须经过干燥,使切片含水率降低到0.01%以下。直接纺丝则将高聚物熔体干燥后的涤纶切片在螺杆中加热熔融,挤压送入纺丝箱体的各个纺丝部位,由计量泵精确计量和过滤后,从喷丝板的小孔中喷出。喷丝孔的直径一般为0.25~0.30毫米。喷出的熔体细流,被冷却气流冷却凝固成丝条。 纺制短纤维时,多根线条集合在一起,经给湿上油后落入成丝桶。再经集束、拉伸、卷曲、热定形、切断等工序得到成品。 如在拉伸后经过一次180℃左右的紧张热定形,则可得到强度达到6克/旦以上、伸长率在30%以下的高强度、低伸长率短纤维。 在纺制长丝时,凝固成形的丝条经给湿上油后,即以 1000米/分左右的速度卷绕在筒管上。卷绕丝在双区热拉伸机上经拉伸而得到长丝,称为无拈无定形长丝,可直接用于织造或经变形加工而成变形丝。也可进一步经双层加拈机提高拈度,再经蒸汽热定形后供织造用。 高速纺丝卷绕 1970年以来发展了高速纺丝卷绕技术,为涤纶变形丝的发展创造了条件。纺丝卷绕的速度一般分为普通速、半高速、高速和超高速四种。卷绕速度在1800米/分以下为普通速;在1800~3000米/分称为半高速;在3000~5000米/分称为高速;6000米/分以上为超高速。工业化生产的高速纺丝卷绕速度已达到3000~3500米/分。高速纺丝卷绕因卷绕速度提高,在熔体细流从熔融态到固态的过程中,高分子处于较高的速度梯度场内,受到较高的张力而形成部分取向,因而卷绕丝称为预取向丝(POY)。预取向丝的取向度较高,高分子间的吸引力较大,纤维结构比较稳定,所以便于贮存和长途运输。预取向丝的条干均匀性和染色均匀性也都有所改善。 预取向丝在拉伸变形机上经拉伸和变形可制成变形纱,称为拉伸变形丝(DTY)。因此高速纺丝不仅能提高产量,而且能缩短制造工序。 美国商品科代尔 (kodel)是已工业化生产的另一种聚酯纤维。它由对苯二甲酸与1,4-环己烷二甲醇缩聚而得的高聚物纺丝而成。与涤纶相比,比重较轻,为1.22,熔点较高为290~295℃,耐分解性能较强,纤维的强度和伸长率稍低。适宜与棉、毛等混纺,制成的织物弹性、手感、耐皱和抗起球性能较好,但强度和耐磨性较差。  聚酯纤维简介  指由多种二元醇和芳香族二元羧酸或其酯经缩聚生成的聚酯为原料所制得纤维的统称。 具体品种有:聚对苯二甲酸乙二酯纤维,聚对苯二甲酸丁二酯纤维,聚对苯二甲酸丙二酯纤维,聚对苯二甲酸-1,4-环己二甲酯纤维,聚-2,6-萘二酸乙二酯纤维,以及多种改性的聚对苯二甲酸乙二酯纤维(如:CDP,ECDP,EDDP)等。 由于聚对苯二甲酸乙二酯纤维是其主要品种,故习称聚酯纤维即指这种纤维。这类纤维外观挺括,热稳定性好,但吸湿性稍差。它们主要用于制作各种衣着用品、床上用品、室内装饰用品等;个别品种如:聚2,6-萘二酸乙二酯纤维主要用于工业方面。  聚酯加强纤维介绍  聚酯纤维是以聚酯(PET,聚对苯二甲酸乙二醇酯)为主要原料,添加一定的功能母料,产品密度136g/cm3,可溶于苯酚一四氯乙烷、邻氯苯酚等溶剂,吸湿性极小,能耐酸,化学稳定性高与聚酰胺,且有良好的耐光性能。纤维在-40℃--+250℃的温度内不脆化、不变形,每根纤维都是独立的,与同时是石油产品的沥青有极强的吸附性,在介质中有良好的吸附性和分散性。当每吨沥青混合料掺入2250克纤维时,将有多达18亿根纤维以三维立体方式对混合料进行加强,提供巨大的内聚力,提高公路的质量和寿命。  聚酯加强纤维主要功能  提高道路质量、延长道路使用寿命 提高沥青混凝土的高温稳定性 提高沥青混凝土的低温抗裂性 提高沥青混凝土的抗疲劳特性 提高沥青混凝土的柔韧性、抗剥落性、抗磨耗性和水稳性 防止产生车辙和路面渠化 防止产生反射裂缝和温度裂缝 防止由于强压造成的路面坑洼  主要用途  保护桥石配筋或钢板不受侵蚀 沥青路面的薄层沥青混凝土罩面 钢结构桥铺设沥青土面层路石的修复和补筑 机场跑道与停机坪的加强 新建沥青路面面层聚酯纤维吸音板 旧沥青面罩层 旧水泥路面罩面 涂补、灌缝、路缘石 聚酯纤维除具有普通聚合物纤维细度大、强度高、易分散的特点,还具有突出的耐高温性能,可广泛应用于热拌合沥青混凝土工程,也可应用于高强混凝土的增强防裂,是理想的多功能增强材料。经国内多家权威机构检测,顺通聚酯纤维主要技术性能指标达到国外同类产品先进水平,另一家诚能聚酯纤维更是在价格和质量上走在国内的最前面.
工业化大量生产的聚酯纤维是用聚对苯二甲酸乙二醇酯制成的,中国的商品名为涤纶。是当前合成纤维的第一大品种。从应用上说,除产生静电外,聚酯纤维对人体几乎没有其它明显危害性作用。意见建议:聚酯纤维”是以聚酯(聚对苯二甲基乙二酯,pes)为主要原料,通过塑化熔融、挤压、高速喷丝、高倍率拉伸后,经特殊表面处理工艺,利用专用切断机切断而成,其外观为多根纤维单丝,颜色呈白色。“抗裂王聚酯纤维”具有普通聚合物纤维细度大、强度高、易分散的特点,还具有突出的耐高温性能,可广泛应用与热拌合沥青混凝土工程,也可应用与高强度混凝的增强防裂,是理想的多功能增强防裂工程材料

文章TAG:怎么把天然纤维进行化学改性怎么  天然  天然纤维  
下一篇