fisher确切概率怎么求p,怎样用这个公式求概率
来源:整理 编辑:八论文 2023-01-09 09:20:08
1,怎样用这个公式求概率
2,概率计算公式
C(8,3)=8*7*6/3/2/1=56 C(12,3)=12*11*10/3/2/1=220 P=56/220=14/55
3,统计学问题Fisher确切概率法有没有卡方值
pearson Chi-square 横行的 value 就是卡方值 df是它的自由度 这些都要报告。
Asynp.sig 就是显著性水平 就是P值 括号里的是说单侧还是双侧检验。
fisher值是Fishier exact test行的 p值就是后面的数。
4,数理统计SPSS同一组数据怎么进行统计学差异分析用卡方和
卡方检验你的数据应该用交叉列联表做,数据录入格式为:建立两个变量,变量1是组别,正常对照组用数据1表示,病例组用数据2表示;变量2是疗效等分类变量,用1表示分类属性1,用2表示分类属性2,还有一个变量3是权重,例数数据录入完成后,先加权频数后点analyze-descriptive statistics-crosstabs-把变量1选到rows里,把变量2选到column里,然后点击下面的statistics,打开对话框,勾选chi-squares,然后点continue,再点ok,出来结果的第3个表就是你要的卡方检验,第一行第一个数是卡方值,后面是自由度,然后是P值。
5,这概率是如何计算的说明详细些
17=6+6+5,共有: 6、6、5 6、5、6 5、6、6 三种投掷顺序的排列,别无其他可能,所以,在6*6*6=216种可能的投掷顺序排列结果中,只有3种排列符合要求,所以,概率是3/216=1/72,换算成小数和百分数,则分别是0.0138888……和1.38……% 12也是一样,列出所有可能的组合,然后除以216就行了 1+5+6(6种排列:156,165,516,561,615,651) 2+4+6(同上,6种排列) 2+5+5(3种排列:255,525,552) 3+3+6(同上,3种排列) 3+4+5(6种排列) 4+4+4(1种排列) 所以一共有:6+6+3+3+6+1=25种排列方式,结果就是25/216这不是计算出来的。前面有一句“实际上”,意思是说,0.632和0.368这两个数据不是由上面题目的数据计算出来的,而是从别的地方或者数据库拿来的。P(买1000张彩票,中奖)=1- P(买1000张彩票,不中奖)=1 - (0.999)^1000=1 -0.368=0.632
6,p值相关计算
统计学意义(p值)ZT
结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
在最后结论中判断什么样的显著性水平具有统计学意义,不可避免地带有武断性。换句话说,认为结果无效而被拒绝接受的水平的选择具有武断性。实践中,最后的决定通常依赖于数据集比较和分析过程中结果是先验性还是仅仅为均数之间的两两>比较,依赖于总体数据集里结论一致的支持性证据的数量,依赖于以往该研究领域的惯例。通常,许多的科学领域中产生p值的结果≤0.05被认为是统计学意义的边界线,但是这显著性水平还包含了相当高的犯错可能性。结果0.05≥p>0.01被认为是具有统计学意义,而0.01≥p≥0.001被认为具有高度统计学意义。但要注意这种分类仅仅是研究基础上非正规的判断常规。
所有的检验统计都是正态分布的吗并不完全如此,但大多数检验都直接或间接与之有关,可以从正态分布中推导出来,如t检验、f检验或卡方检验。这些检验一般都要求:所分析变量在总体中呈正态分布,即满足所谓的正态假设。许多观察变量的确是呈正态分布的,这也是正态分布是现实世界的基本特征的原因。当人们用在正态分布基础上建立的检验分析非正态分布变量的数据时问题就产生了,(参阅非参数和方差分析的正态性检验)。这种条件下有两种方法:一是用替代的非参数检验(即无分布性检验),但这种方法不方便,因为从它所提供的结论形式看,这种方法统计效率低下、不灵活。另一种方法是:当确定样本量足够大的情况下,通常还是可以使用基于正态分布前提下的检验。后一种方法是基于一个相当重要的原则产生的,该原则对正态方程基础上的总体检验有极其重要的作用。即,随着样本量的增加,样本分布形状趋于正态,即使所研究的变量分布并不呈正态。
7,怎么算概率
定理:设A、B是互不相容事件(AB=φ),则:P(A∪B)=P(A)+P(B)推论1:设A1、 A2、…、 An互不相容,则:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An)推论2:设A1、 A2、…、 An构成完备事件组,则:P(A1+A2+...+An)=1推论3: 为事件A的对立事件。推论4:若B包含A,则P(B-A)= P(B)-P(A)推论5(广义加法公式):对任意两个事件A与B,有P(A∪B)=P(A)+P(B)-P(AB) [1] 条件概率条件概率:已知事件B出现的条件下A出现的概率,称为条件概率,记作:P(A|B)条件概率计算公式:当P(A)>0,P(B|A)=P(AB)/P(A)当P(B)>0,P(A|B)=P(AB)/P(B) [1] 乘法公式P(AB)=P(A)×P(B|A)=P(B)×P(A|B)推广:P(ABC)=P(A)P(B|A)P(C|AB) [1] 全概率公式设:若事件A1,A2,…,An互不相容,且A1+A2+…+An=Ω,则称A1,A2,…,An构成一个完备事件组。全概率公式的形式如下: 以上公式就被称为全概率公式12粒围棋子从中任取3粒的总数是C(12,3) 取到3粒的都是白子的情况是C(8,3) C(8,3) P=——————=14/55 C(12,3) 排列:从n个不同的元素中取m(m≤n)个元素,按照一定的顺序排成一排,叫做从n个不同的元素中取m个元素的排列。 排列数:从n个不同的元素中取m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Anm 排列公式:A(n,m)=n*(n-1)*.....(n-m+1) 组合:从n个不同的元素中,任取m(m≤n)个元素并成一组,叫做从n个不同的元素中取m个元素的组合。 组合数:从n个不同的元素中取m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,记为Cnm。 组合公式:C(n,m)=A(n,m)/m!=n!/(m!*(n-m)!) 拓展资料: 概率的计算,是根据实际的条件来决定的,没有一个统一的万能公式。解决概率问题的关键,在于对具体问题的分析。然后,再考虑使用适宜的公式。 有一个公式是常用到的:P(A)=m/n。“(A)”表示事件。“m”表示事件(A)发生的总数。“n”是总事件发生的总数。布丰(comte de buffon)设计出他的著名的投针问题(needle problem)。依靠它,可以用概率方法得到π的近似值。假定在水平面上画上许多距离为a的平行线,并且,假定把一根长为l<a的同质均匀的针随意地掷在此平面上。布丰证明:该针与此平面上的平行线之一相交的概率为:p=2l/(api) 把这一试验重复进行多次,并记下成功的次数,从而得到p的一个经验值,然后用上述公式计算出π的近似值,用这种方法得到的最好结果是意大利人拉泽里尼(lazzerini)于1901年给出的。他只掷了3408次针,就得到了准确到6位小数的π的值。他的试验结果比其他试验者得到的结果准确多了,甚至准确到使人们对它有点怀疑。还有别的计算π的概率方法。例如,1904年,查尔特勒斯(r·chartres)就写出了应用下列实例的报告:如果写下任意两个整数测它们互素的概率为6/π2。 下面就是一个简单而巧妙的证明。找一根铁丝弯成一个圆圈,使其直径恰恰等于平行线间的距离d。可以想象得到,对于这样的圆圈来说,不管怎么扔下,都将和平行线有两个交点。因此,如果圆圈扔下的次数为n次,那么相交的交点总数必为2n。 现在设想把圆圈拉直,变成一条长为πd的铁丝。显然,这样的铁丝扔下时与平行线相交的情形要比圆圈复杂些,可能有4个交点,3个交点,2个交点,1个交点,甚至于都不相交。 由于圆圈和直线的长度同为πd,根据机会均等的原理,当它们投掷次数较多,且相等时,两者与平行线组交点的总数可望也是一样的。这就是说,当长为πd的铁丝扔下n次时,与平行线相交的交点总数应大致为2n。现在转而讨论铁丝长为l的情形。当投掷次数n增大的时候,这种铁丝跟平行线相交的交点总数m应当与长度l成正比,因而有:m=kl,式中k是比例系数。为了求出k来,只需注意到,对于l=πk的特殊情形,有m=2n。于是求得k=(2n)/(πd)。代入前式就有:m≈(2ln)/(πd)从而π≈(2ln)/(dm)
文章TAG:
fisher确切概率怎么求pfisher 确切 概率