有理数的讲解怎么引出,初中的有理数好难哦有谁能出出招教我简单的解法注有理数的
来源:整理 编辑:八论文 2023-12-25 14:20:40
1,初中的有理数好难哦有谁能出出招教我简单的解法注有理数的
加上一个负数就等于减去这个数的相反数
正+负:负>正时,负数的相反数就减去正数。负<正时,正数就减去负数的相反数。
正-负:负>正时,负数的相反数就加上正数,负<正时,正数就加上负数的相反数
。总结:减去一个数,就等于加上这个数的相反数
负*正=负
正*正=正
负*负=正
负/正=负
正/负=负
2,有理数是怎样产生的
无限不循环小数和开根开不尽的数叫无理数
整数和分数统称为有理数
包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。
这一定义在数的十进制和其他进位制(如二进制)下都适用。
数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογο? ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。
所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。
有理数分为整数和分数
整数又分为正整数、负整数和0
分数又分为正分数、负分数
正整数和0又被称为自然数
3,有理数的由来
古埃及人约于公元前17世纪已使用分数,中国《九章算术》中也载有分数的各种运算。分数的使用是由于除法运算的需要。除法运算可以看作求解方程px=q(p≠0),如果p,q是整数,则方程不一定有整数解。为了使它恒有解,就必须把整数系扩大成为有理系。 关于有理数系的严格理论,可用如下方法建立。在Z×(Z -)即整数有序对(但第二元不等于零)的集上定义的如下等价关系:设 p1,p2 Z,q1,q2 Z - ,如果p1q2=p2q1。则称(p1,q2)~(p2,q1)。Z×(Z -)关于这个等价关系的等价类,称为有理数。(p,q)所在的有理数,记为 。一切有理数所成之集记为Q。令整数p对应一于 ,即(p,1)所在的等价类,就把整数集嵌入到有理数的集中。因此,有理数系可说是由整数系扩大后的数系。
4,有理数的产生过程
人们原始社会要打猎,要计算人头,就发明了自然数12345~~~~~过了一段儿少了一个人欠了一头羊怎么表示就有了负数,-1-2-3-4-5~~~~然后发展到整数012345~~~0是很不容易才被发明出来的。过了一段时间要拿钱买东西,发现了分数,分数等于小数。小数不能整除的都能循环啊。这时候这些以上的统称有理数然后人们发现了一个很重要的数圆周率pi。人们怎么除也没有循环,哪么为了区分这个数跟其他的区别,就把这类没有循环的无穷小数叫做了无理数。哪么另一部分就叫做有理数了。根号2,根号3等也是无理数。无理数和有理数统称实数。够短了。无限不循环小数和开根开不尽的数叫无理数 整数和分数统称为有理数 包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。 这一定义在数的十进制和其他进位制(如二进制)下都适用。 数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογο? ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。 所有有理数的集合表示为 q,有理数的小数部分有限或为循环。 有理数分为整数和分数 整数又分为正整数、负整数和0 分数又分为正分数、负分数 正整数和0又被称为自然数
5,数学初一的有理数是怎么做的
已知a.b互为相反数,c.d互为倒数,x的绝对值为1.求式子(a+b+cd)÷x的值。解:由题意得 a+b=0 cd=1 x=正负1 当x=1时 (a+b+cd)/x=(0+1)/1=1/1=1 当x=-1时 (a+b+cd)/x=(0+1)/(-1)=-1综上所述式子(a+b+cd)÷x的值是正1或负1.有理数(rational number): 无限不循环小数和开根开不尽的数叫无理数 ,比如π,3.141592653... 而有理数恰恰与它相反,整数和分数统称为有理数 包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。 这一定义在数的十进制和其他进位制(如二进制)下都适用。 数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογο? ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。 所有有理数的集合表示为 q,有理数的小数部分有限或为循环。 有理数分为整数和分数 整数又分为正整数、负整数和0 分数又分为正分数、负分数 正整数和0又被称为自然数 如3,-98.11,5.72727272……,7/22都是有理数。 有理数还可以划分为正整数、负整数、正分数、负分数和0。 全体有理数构成一个集合,即有理数集,用粗体字母q表示,较现代的一些数学书则用空心字母q表示。 有理数集是实数集的子集。相关的内容见数系的扩张。 有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数): ①加法的交换律 a+b=b+a; ②加法的结合律 a+(b+c)=(a+b)+c; ③存在数0,使 0+a=a+0=a; ④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0; ⑤乘法的交换律 ab=ba; ⑥乘法的结合律 a(bc)=(ab)c; ⑦分配律 a(b+c)=ab+ac; ⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a1=a; ⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。 ⑩0a=0 文字解释:一个数乘0还等于这个数。 此外,有理数是一个序域,即在其上存在一个次序关系≤。 有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a。由此不难推知,不存在最大的有理数。 值得一提的是有理数的名称。“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。 有理数加减混合运算 1.理数加减统一成加法的意义: 对于加减混合运算中的减法,我们可以根据有理数减法法则将减法转化为加法,这样就可将混合运算统一为加法运算,统一后的式子是几个正数或负数的和的形式,我们把这样的式子叫做代数和。 2.有理数加减混合运算的方法和步骤: (1)运用减法法则将有理数混合运算中的减法转化为加法。 (2)运用加法法则,加法交换律,加法结合律简便运算。 有理数范围内已有的绝对值,相反数等概念,在实数范围内有同样的意义。 一般情况下,有理数是这样分类的: 整数、分数;正数、负数和零;负有理数,非负有理数 整数和分数统称有理数,有理数可以用a/b的形式表达,其中a、b都是整数,且互质。我们日常经常使用有理数的。比如多少钱,多少斤等。 凡是不能用a/b形式表达的实数就是无理数,又叫无限不循环小数 有理数(rational number): 无限不循环小数和开根开不尽的数叫无理数 整数和分数统称为有理数 包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。 这一定义在数的十进制和其他进位制(如二进制)下都适用。 数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογο? ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。 所有有理数的集合表示为 q,有理数的小数部分有限或为循环。 有理数分为整数和分数 整数又分为正整数、负整数和0 分数又分为正分数、负分数 正整数和0又被称为自然数 如3,-98.11,5.72727272……,7/22都是有理数。 有理数还可以划分为正有理数、负有理数和0。 全体有理数构成一个集合,即有理数集,用粗体字母q表示,较现代的一些数学书则用空心字母q表示。 有理数集是实数集的子集。相关的内容见数系的扩张。 有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数): ①加法的交换律 a+b=b+a; ②加法的结合律 a+(b+c)=(a+b)+c; ③存在数0,使 0+a=a+0=a; ④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0; ⑤乘法的交换律 ab=ba; ⑥乘法的结合律 a(bc)=(ab)c; ⑦分配律 a(b+c)=ab+ac; ⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a1=a; ⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。 ⑩0a=0 此外,有理数是一个序域,即在其上存在一个次序关系≤。 有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a。由此不难推知,不存在最大的有理数。 值得一提的是有理数的名称。“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。 有理数加减混合运算 1.理数加减统一成加法的意义: 对于加减混合运算中的减法,我们可以根据有理数减法法则将减法转化为加法,这样就可将混合运算统一为加法运算,统一后的式子是几个正数或负数的和的形式,我们把这样的式子叫做代数和。 2.有理数加减混合运算的方法和步骤: (1)运用减法法则将有理数混合运算中的减法转化为加法。 (2)运用加法法则,加法交换律,加法结合律简便运算。 有理数范围内已有的绝对值,相反数等概念,在实数范围内有同样的意义。 一般情况下,有理数是这样分类的: 整数、分数;正数、负数和零;负有理数,非负有理数我是数学老师,我来回答!因为a.b互为相反数,所以a+b=0,因为c.d互为倒数,所以cd=1.因为x的绝对值为1,所以X=1或-1.将以上值代回原式得:0+1/1或0+1/(-1)=1或-1.综上所述,原式的值为1或-1.
文章TAG:
有理数的讲解怎么引出有理 有理数 数的