1,指数函数怎么用word写

你好!你是问在Word中如何打出数字字母的上标吗?Word中输入上标有快捷键,当要输入时上标时同时按下“Shift+Ctrl+ =” 快捷键就进入上标输入状态,输完上标再按一下“Shift+Ctrl+ =” 快捷键就恢复正常输入状态,很方便,你不妨一试。
有一款mathtype软件可以写出任意的公式然后插入word文档中,很好使的.你可以试试.
比如说输入 y 等于 2 的 x 次方,在word 里这样输: 输入 y = 2 然后 用鼠标点击 “格式”,在下级菜单中选“字体”,弹出 对话框,在窗口中找 “上标”,在其前面的方框中点一下,再点击“确定”,就可以输入 x 了。 如果,指数部分是 x 的式子的话,这种方法就不行了。那得借助“公式编辑器”或专用插件。

指数函数怎么用word写

2,c中的指数函数怎么写

C里面函数原型是double pow(double,double),需要包含math.h。C++里面推荐这样用(包含ISO C++从C继承的数学函数库,但头文件不带.h扩展名且前面加c,需要用namespace std,函数原型与C中相同):#include//添加需要包含的头文件... using namespace std; int main() { double d,a=2,b=3; d=pow(a,b); //d=a^b //添加代码... return 0; } 另外如果使用底数为e,可以用double exp(double),用法与以上类似
c里面函数原型是double pow(double,double),需要包含math.h。 c++里面推荐这样用(包含iso c++从c继承的数学函数库,但头文件不带.h扩展名且前面加c,需要用namespace std,函数原型与c中相同): #includereturn 0;}另外如果使用底数为e,可以用double exp(double),用法与以上类似。

c中的指数函数怎么写

3,指数函数怎么写

一般地,形如y=a^x(a>0且a≠1) (x∈R)的函数叫做指数函数(exponential function) 。也就是说以指数为自变量,底数为大于0且不等于1的常量的函数称为指数函数,它是初等函数中的一种。
指数函数的一般形式为y=a^x(a>0且不=1) ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得   如图所示为a的不同大小影响函数图形的情况。   在函数y=a^x中可以看到:   (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,   同时a等于0一般也不考虑。   (2) 指数函数的值域为大于0的实数集合。   (3) 函数图形都是下凹的。   (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。   (5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。   (6) 函数总是在某一个方向上无限趋向于x轴,永不相交。   (7) 函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b)   (8) 显然指数函数无界。

指数函数怎么写

4,高二数学函数论文怎么写

本学期,我们学习了许许多多的数学知识。从“几何”到“代数”再到“数形结合”。太多太多了。8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”。 一开始接触“函数”这个概念时还是非常陌生的。因为转眼望去,前面的单元基本是“小学”和“初一”接触过得。而对于“函数”来说确是几乎“一无所知”。只知道初一老师说过“可能性”和“函数”有着密切的关系。翻开这个单元时,真的有点“丈二和尚摸不着头脑”。 上面说了种种对“函数”概念的无知。所以自然在一开始学习的过程中会遇到“困难”。这单元的第一章从生活实际出发讲了“函数”的定义等等。这是一个比较“浮浅”的类容(从我现在的角度来说)。从这里我真正接触到了“函数”,但也许是学习没有完全进入。当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他。”第二章类容可以说就是对第一章的一个“浓缩”。好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去。学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多。真正的困难出现在第三章,谈到了“一次函数的图象”。可以老实说这章听得差不多是我本学期听的最累的一节课。老师发下来讲义,我那节课觉得您讲的奇快。我还没反应过来你就讲完了。我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的。于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变。觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了。 以上就是我学习“一次函数”的经历。下面我们在来分析一下“一次函数”。从类别上讲,“一次函数”是一个“数形结合”的“典范”。它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”。使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了。其次“一次函数”我认为是一个有趣,神奇的类容。它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律。不能不觉得“一次函数”充满了“魔力”。此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”。我想2章的联合编排更是教会我们“复习整理”的学习方法。所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”。“一次函数”也使我对这本教材有了全新的认识和看法。 “一次函数”不仅有趣而且更是“历届”中考的“重中之重”。所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容。 以上就是我的这篇“数学小论文-一次函数”,所有观点只是我个人之见,谢谢!

5,指数函数怎么写呀

 指数函数的一般形式为y=a^x(a>0且不=1) ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得   如图所示为a的不同大小影响函数图形的情况。   在函数y=a^x中可以看到:   (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,   同时a等于0一般也不考虑。   (2) 指数函数的值域为大于0的实数集合。   (3) 函数图形都是下凹的。   (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。   (5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。   (6) 函数总是在某一个方向上无限趋向于X轴,永不相交。   (7) 函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b)   (8) 显然指数函数无界。   (9) 指数函数既不是奇函数也不是偶函数。   (10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。   例1:下列函数在R上是增函数还是减函数?说明理由.   ⑴y=4^x   因为4>1,所以y=4^x在R上是增函数;   ⑵y=(1/4)^x   因为0<1/4<1,所以y=(1/4)^x在R上是减函数 `~~~~```~~~哈哈
 指数函数的一般形式为y=a^x(a>0且不=1) ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得   如图所示为a的不同大小影响函数图形的情况。   在函数y=a^x中可以看到:   (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,   同时a等于0一般也不考虑。   (2) 指数函数的值域为大于0的实数集合。   (3) 函数图形都是下凹的。   (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。   (5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。   (6) 函数总是在某一个方向上无限趋向于X轴,永不相交。   (7) 函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b)   (8) 显然指数函数无界。

文章TAG:怎么写指数函数的论文怎么  指数  指数函数  
下一篇