三年级数学论文缩短怎么写,三年级数学小论文200字该怎么写
来源:整理 编辑:八论文 2023-07-29 13:00:04
1,三年级数学小论文200字该怎么写
[题目1]4本日记本和8本练习本的价钱相等。小明买3本日记本和5本练习本,共用去4.4元。日记本和练习本的单价各是多少元? 这道题我是这样想的:把哦了卡了哦了啊啦啦差啦啦啦哈4啊科特他还哭诺拉1服务记录人民币中的数学问题 有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。 在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!
2,三年级的数学小论文怎么写要短一些
找几个数学家的例子,是一类的,然后总结他们成功的经验,在写些我们应该怎么学习数学的话就好了虽然不太明白什么意思,还是靠我的理解给你写一篇吧。(我是按学生写的,你应该不是老师吧)小学6年级数学小论文小学的学习即将结束,我对小学数学也有了一些了解,在此篇论文中做一下总结。小学数学主要是奠定数学的一些最基础的概念,除了基本正有理数运算外,有两个主要部分,一是图形或几何体体积、面积的求解以及性质,即几何部分;二是一次方程以及其实际应用,即代数部分。下面我将依次说明。几何部分。几何是数学中一个重要分支,在小学,我们学习了一些几何公式,像三角形:c△=三角形三边之和s△=底×高÷2平行四边形:c=四边之和s=底×高圆形:c=2πrs=πr2立方体(长方体):s=六面面积之和v=底面积×高圆柱体:s=s侧+2s底v=s底×高还学会了一些几何性质,如平行四边形对边相等,有一个角是直角的平行四边形是矩形,圆柱体的侧面展开是一个长方形等,这些性质加深了我们对几何图形的理解,让我们能够根据这些性质解决一些简单的几何问题,并理解几何的一些公式。代数部分。代数是贯穿整个数学的思想,在小学,我们学习了正有理数的一些基本运算,还学习了一元一次方程与二元一次方程的列与解,简单了解了移项,合并同类项等一些基本解方程地方法,并能够利用方程解决一些实际问题,这些都是为今后高次方程与函数奠定的基础。这些是我们在6年学习的一些主要数学知识,我们应记牢小学中学过的知识,以便今后更深入的研究。
3,怎样写小学生三年级的数学论文
古尔邦节快到了,天山南北充满了节日气氛。集镇上,车水马龙,热闹异常。店铺里、道路旁、地摊上,到处都摆满了货物,琳琅满目,应有尽有。水果商们把贮藏保鲜的苹果、葡萄、雪梨、石油、哈密瓜一并搬了出来,希望卖个好价钱。 这天晌午,阿凡提忙完了半天的活计,也骑着毛驴赶集来了。阿凡提以聪明能干、正直仗义闻名遐尔,谁个不认识?一路上,他不住地和熟人、朋友打着招呼。忽然,听见有人高喊他的名字,阿凡提回头一看,原来水果店老板艾山。此人奸诈贪婪,不仅常用假冒伪劣商品坑害顾客,还专门放高利贷剥削百姓,是个人人痛恨的坏蛋。阿凡提早就想教训教训这家伙,可就是没有遇上机会。这时艾山正拿着秤杆坐在两大筐葡萄跟前发愣。一筐是紫葡萄,标价为2元1斤;一筐是青葡萄,标价为1元2斤。只是问的人多,买的人少。 “阿凡提大哥,如今做点生意真不容易呀。您看,我在这捱了一上午,还没卖出几斤葡萄,现在紫葡萄和青葡萄都还剩下60斤,不知要卖到何时呢!”艾山其实想央求阿凡提帮他出个推销葡萄的点子,又不好意思说。 阿凡提听出了弦外之音,心想:这家伙正好送上门来,使个办法叫他亏点钱吧,也让大伙儿出口气。就来到水果摊前对艾山说:“啊,艾山老弟,你可真笨!紫葡萄虽甜,但价格贵,青葡萄虽便宜,却味道酸。何不把两种葡萄掺在一起,按3元3斤出卖,也就是每斤1元,这样不是既好卖又省事吗?” 艾山一听顿时眉开眼笑,连忙竖起大拇指称赞道:“阿凡提大哥真是聪明,名不虚传,名不虚传!”于是艾山按阿凡提的办法出售葡萄,果然买的人多了起来,不多时,120斤葡萄卖光了。 可是,当艾山清点卖得的钱数时,不由得皱起了眉头:如果按照原来的价格卖,紫葡萄应该卖2元×60=120元,青葡萄应该卖1元×(60÷2)=30元,一共应该能卖到120元+30元=150元,可现在卖得的钱却只有120元,怎么少了30元呢?他猫腰瞪眼在葡萄摊前转来转去,找遍了每个角落,也不见丢失的30元钱。最后才悟到是让阿凡提给捉弄了。当他想追上阿凡提问个明白时,阿凡提早已骑着毛驴走得无影无踪了。
4,如何写数学小论文200300字
2012-08-16 11:28 提问者采纳生活中的“奇妙等式”数学中有许多等式,比如“速度×时间=路程”、“单价×数量=总价”,今天,我要向大家介绍几条数学与我的等式。生活中,我总结出这一等式:“我+父母=正确数学”。平时,我会经常遇到一些难题,但是,父母的工作十分繁忙,很少有时间陪我,每当我睡下时,他们还没回来,一家人唯一的沟通方法,就是那一本“留言本”。每次留下的题目,父母总会绞尽脑汁地为我解答。父母学习书上的例题,给我解答是最令我感动的。每次看到留言本上,父母给我留下的解题思路,我都会在心中默默地感谢他们。小时候,父母也为我总结出这一等式:“课本+生活=数学”。那时,父母工作都不是很忙,每次出去买东西,都会带上我。最让我记忆犹新的是我上中班的时候,妈妈带我买菜的一件事。当时,正值秋季,妈妈见路边有些卖苹果的摊子,便和卖苹果的人讨价还价起来,最终,以一元一斤的价钱买了三斤。当时,妈妈转过头来,亲切地问:“赢赢,一元一斤的苹果,三斤多少钱?”我想了想,说:“是,是三块钱。”惹得周围的人直夸我聪明。回家后,妈妈又问我是怎么会的,我笑着说:“我是用1+1+1=3的。”直到现在,妈妈还经常提那件事,教育我说:“数学不光要学课本上的,还要学习生活中的。”“每晚三题=快乐数学。”这是我小学三年级时所立下的等式。每天晚上做三道思考题不多也不少,只要坚持不懈,一定能积累许多。现在,我依然坚持每天做三道思考题,有时间还能多做一点,两年多了,不知道自己已经做了多少了,也不知道自己写满了多少的本子,这种作业方式,使我受益非浅,让我在多次数学竞赛中获奖,品尝胜利的喜悦。“勤动脑+勤动手=成功,”这是我通过实际生活所悟出的道理,也是我一般的解题顺序。一般拿到题目,我总要先读懂题目,弄清资料,掌握其中的关系,然后根据关系列出算式,一步步地解答。有时,还可以通过画图的方法,根据已知数量画出线段图,便于理解题目。至于答完之后,再找几道类似的题目,巩固一下,对学习也有好处。其实,生活中还有许多奇妙的等式,在等着我们去总结,去探索。这是一篇数学论文,可以参考一下。望采纳O(∩_∩)O~
5,数学小论文怎么写
数学小论文:《容易忽略的答案》
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
数学小论文
今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!
想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!
想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!
想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。
我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
6,小学数学论文怎么写
范文
小学数学与生活的接轨
新的一轮课程改革,进一步促使数学生活化,数学与生活进一步接轨是指从学生的已有经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用过程。数学源于生活,生活中又充满着数学。因此,数学教学内容应力求从学生熟悉的生活情境出发设计数学问题,让学生真正体验数学与生活的关系,从而实现“人人学有价值的数学;人人都能获得必需的数学”。为此,教师要经常引导学生提供他们所熟悉的经验,充分利用学生现有的知识经验和他们所熟悉的事物组织教学,把学生的生活经验课堂化,将抽象的数学转化为有趣、生动、易于理解的事物,贴近生活,这就要求小学数学教学要与生活进一步接轨。
一、数学情境与生活接轨
教师将学生熟悉的生活情境和感兴趣的问题作为数学活动的切入点,能让学生感到数学来自于生活,生活中处处有数学,增强学习的好奇和兴趣,从而进入一个良好的学习状态。在日常教学中,用学生熟悉的生活经验作教学实例,利用学生已有的生活经验学习数学知识。
如:在教学《分桃子》一课时,我创设情境:先要求每个学生拿出9个桃子放在盘子里,每盘放的个数一样多,有几种放法,可以放几盘?当学生操作完之后,从中选择五种:(1)每盘放3个,9÷3=3(盘);(2)每盘放9个,9÷9=1(盘);(3)每盘放2个,9÷2=4(盘),多1个;(4)每盘放4个,9÷4=2(盘)多1个;(5)每盘放5个,9÷5=1(盘)多4个。接下来引导学生观察上面五个除法式子,并提问:可分成几种情况;学生于是很快的观察到:一类正好分完,另一类分完后还有剩余的。于是老师再画龙点睛地指出,正好分完的除法和除法算式,这是我们以前学过的;分了以后还剩余的算式,我们就把它叫做“有余数的除法”,这样创设生活情景,可以使课堂教学更接近现实生活,使学生身临其境,轻松的接受新知识。
二、数学理解与生活接轨
生活是数学的源泉,生活中更是充满着数学问题。善于捕捉生活现象,沟通数学知识与生活实际的联系,把生活中的问题逐步抽象成为数学问题,是激发学生学习兴趣,并使之产生学习需要的有效方法。新的课程标准更多地强调学生用数学的眼光从生活中捕捉数学问题,探索数学规律,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。在教学中我们要善于从学生的生活中抽象数学问题,从学生的已有生活经验出发,设计学生感兴趣的生活素材以丰富多彩的形式展现给学生,使学生感受到数学与生活的联系——数学无处不在,生活处处有数学。
如:在教学两位数乘法后,安排这样一个数学问题,学校组织师生去公园游玩。老师28人,小朋友150人。公园门口写着:门票成人每人30元,学生每人15元,团体30人以上每人20人。请同学们设计一种你认为最好的购票方案。对这个问题,不同的学生有不同的设计方案:
1、全买团体票:(28+150)×20=3560元
2、不买团体票:28×30+150×15=3090元
3、一部分买团体票,一部分不买:(28+2)×20+(150-2)×15=2820元
通过不同的方案的比较,培养学生应用数学知识理财的意识。
三、日常生活“数学化”
孩子们的知识应该是在对话中形成,在交流中重组,在共享中倍增。在今天的“课堂超市”环节中,这一切体现得淋漓尽致。如:我先出示了文具价目表:篮球95元/个,排球50元/个,之后出示了一个数学问题,“买4个排球和6个篮球共要多少钱?”。这样的数学问题,没有用新教材的学生一般的解题思路只有这一种“95×6+50×4”,可是使用了新教材的孩子们却出现了多种解决方法:(1)95×6+50×4;(2)(95+50)×4+95×2;(3)(95+50)×6-50×2
通过“课堂超市”展示,使我们的数学走进了生活,使我们的孩子们体验到了解决问题策略的多样性,促使了孩子的思维开放性,培养了他们的实践能力和创新能力。
总而言之,引导学生捕捉生活现象,发现数学问题,将数学教学与生活接轨,让学生从生活中寻找数学素材,感受生活中处处有数学,数学处处有美感,缩短数学与生活的距离,扩大了学生的认知视野,拓展了学生的思维空间,既满足了学习和理解数学知识的需要,又体会了数学的价值,培养了数学兴趣,何乐而不为呢?为了使数学更接近生活,让数学教学充满生活气息和时代色彩,真正调动起学生学习数学的积极性,培养他们的自主创新能力和解决问题的能力是刻不容缓的教育使命。
望采纳,谢谢0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
7,小学数学论文怎么写
小学数学教学论文--在小学数学教学中培养学生的思维能力
培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。下面就如何培养学生思维能力谈几点看法。
一 培养学生的逻辑思维能力是小学数学教学中一项重要任务
思维具有很广泛的内容。根据心理学的研究,有各种各样的思维。在小学数学教学中应该培养什么样的思维能力呢?《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”这一条规定是很正确的。下面试从两方面进行一些分析。首先从数学的特点看。数学本身是由许多判断组成的确定的体系,这些判断是用数学术语和逻辑术语以及相应的符号所表示的数学语句来表达的。并且借助逻辑推理由一些判断形成一些新的判断。而这些判断的总和就组成了数学这门科学。小学数学虽然内容简单,没有严格的推理论证,但却离不开判断推理,这就为培养学生的逻辑思维能力提供了十分有利的条件。再从小学生的思维特点来看。他们正处在从具体形象思维向抽象逻辑思维过渡的阶段。这里所说的抽象逻辑思维,主要是指形式逻辑思维。因此可以说,在小学特别是中、高年级,正是发展学生抽象逻辑思维的有利时期。由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目的,既符合数学的学科特点,又符合小学生的思维特点。
值得注意的是,《大纲》中的规定还没有得到应有的和足够的重视。一个时期内,大家谈创造思维很多,而谈逻辑思维很少。殊不知在一定意义上说,逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。因此如何贯彻《小学数学教学大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,还是值得重视和认真研究的问题。
《大纲》中强调培养初步的逻辑思维能力,只是表明以它为主,并不意味着排斥其他思维能力的发展。例如,学生虽然在小学阶段正在向抽象逻辑思维过渡,但是形象思维并不因此而消失。在小学高年级,有些数学内容如质数、合数等概念的教学,通过实际操作或教具演示,学生更易于理解和掌握;与此同时学生的形象思维也会继续得到发展。又例如,创造思维能力的培养,虽然不能作为小学数学教学的主要任务,但是在教学与旧知识有密切联系的新知识时,在解一些富有思考性的习题时,如果采用适当的教学方法,可以对激发学生思维的创造性起到促进作用。教学时应该有意识地加以重视。至于辩证思维,从思维科学的理论上说,它属于抽象逻辑思维的高级阶段;从个体的思维发展过程来说,它迟于形式逻辑思维的发展。据初步研究,小学生在10岁左右开始萌发辨证思维。因此在小学不宜过早地把发展辩证思维作为一项教学目的,但是可以结合某些数学内容的教学渗透一些辩证观点的因素,为发展辩证思维积累一些感性材料。例如,通用教材第一册出现,可以使学生初步地直观地知道第二个加数变化了,得数也随着变化了。到中年级课本中还出现一些表格,让学生说一说被乘数(或被除数)变化,积(或商)是怎样跟着变化的。这就为以后认识事物是相互联系、变化的思想积累一些感性材料。
二 培养学生思维能力要贯穿在小学数学教学的全过程
现代教学论认为,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。这样说,绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目的。如果不注意这一点,教材没有有意识地加以编排,教法违背激发学生思考的原则,不仅不能促进学生思维能力的发展,相反地还有可能逐步养成学生死记硬背的不良习惯。
怎样体现培养学生思维能力贯穿在小学数学教学的全过程?是否可以从以下几方面加以考虑。
(一)培养学生思维能力要贯穿在小学阶段各个年级的数学教学中。要明确各年级都担负着培养学生思维能力的任务。从一年级一开始就要注意有意识地加以培养。例如,开始认识大小、长短、多少,就有初步培养学生比较能力的问题。开始教学10以内的数和加、减计算,就有初步培养学生抽象、概括能力的问题。开始教学数的组成就有初步培养学生分析、综合能力的问题。这就需要教师引导学生通过实际操作、观察,逐步进行比较、分析、综合、抽象、概括,形成10以内数的概念,理解加、减法的含义,学会10以内加、减法的计算方法。如果不注意引导学生去思考,从一开始就有可能不自觉地把学生引向死记数的组成,机械地背诵加、减法得数的道路上去。而在一年级养成了死记硬背的习惯,以后就很难纠正。
(二)培养学生思维能力要贯穿在每一节课的各个环节中。不论是开始的复习,教学新知识,组织学生练习,都要注意结合具体的内容有意识地进行培养。例如复习20以内的进位加法时,有经验的教师给出式题以后,不仅让学生说出得数,还要说一说是怎样想的,特别是当学生出现计算错误时,说一说计算过程有助于加深理解“凑十”的计算方法,学会类推,而且有效地消灭错误。经过一段训练后,引导学生简缩思维过程,想一想怎样能很快地算出得数,培养学生思维的敏捷性和灵活性。在教学新知识时,不是简单地告知结论或计算法则,而是引导学生去分析、推理,最后归纳出正确的结论或计算法则。例如,教学两位数乘法,关键是通过直观引导学生把它分解为用一位数乘和用整十数乘,重点要引导学生弄清整十数乘所得的部分积写在什么位置,最后概括出用两位数乘的步骤。学生懂得算理,自己从直观的例子中抽象、概括出计算方法,不仅印象深刻,同时发展了思维能力。在教学中看到,有的老师也注意发展学生思维能力,但不是贯穿在一节课的始终,而是在一节课最后出一两道稍难的题目来作为训练思维的活动,或者专上一节思维训练课。这种把培养思维能力只局限在某一节课内或者一节课的某个环节内,是值得研究的。当然,在教学全过程始终注意培养思维能力的前提下,为了掌握某一特殊内容或特殊方法进行这种特殊的思维训练是可以的,但是不能以此来代替教学全过程发展思维的任务。
(三)培养思维能力要贯穿在各部分内容的教学中。这就是说,在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例如,教学长方形概念时,不宜直接画一个长方形,告诉学生这就叫做长方形。而应先让学生观察具有长方形的各种实物,引导学生找出它们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,与先把3和5加在一起再同2相加,结果相同〕。然后引导学生对几个例子进行分析、比较,找出它们的共同点,即等号左端都是先把前两个数相加,再同第三个数相加,而等号右端都是先把后两个数相加,再同第一个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如57+28+12)中去并能说出根据什么可以使计算简便。这样又学到演绎的推理方法至于解应用题引导学生分析数量关系,这里不再赘述。
三 设计好练习题对于培养学生思维能力起着重要的促进作用
培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。为此提出以下几点建议供参考。
(一)设计练习题要有针对性,要根据培养目标来进行设计。例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。( )”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以断定上面的判断是错误的。
文章TAG:
三年级数学论文缩短怎么写三年 三年级 年级