本文目录一览

1,数学论文怎么写2000字左右

把公式都抄上,加一堆废话就写好了,给分谢谢
你好, 我最近才完成一篇建模论文 数学论文统计学的最好写你需要先定好题目 这也是最难的,决定好生活中的某个问题如 车流量 人流量 然后针对这个问题进行大量的调查收集数据 作出分析得出结论

数学论文怎么写2000字左右

2,帮我写一篇以生活中的数学为主题的论文

aa+1a+2aa+7a+14aa+6a+12
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

帮我写一篇以生活中的数学为主题的论文

3,数学小论文2000字

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

数学小论文2000字

4,生活中的数学论文怎么写

你看见过北京雄伟的“鸟巢”和魔幻般的“水立方”了吗?你看到我国的“神州七号”宇宙飞船平安返回地球了吗?在你与世界各地的人民共同赞叹它们的神奇之余,有没有想到过设计建设、制造它们时,科学家们运用了多少的数学知识来解决问题的呢? 你有去商店买东西的经历吗?你有与你的同伴分享物品的经历吗?这时,你都在不知不觉中运用了数学知识。 其实数学来源了生活,又服务了生活,在生活中数学的运用无处不在。 作为中学生,我们所掌握的知识,虽然还不能解决宇宙飞船上天、奥运场馆设计等问题,但是也可以解决一些生活中较为复杂的实际问题了。 就如前几天吧,数学知识可帮了我大忙呢! 我生日快到了,我想亲自动手制作生日会上的生日礼帽,说做就做,我匆忙的去买了彩纸,画上扇形,再剪下来……,一两下全搞定了,我拿着刚做好的生日礼帽,沾沾自喜,往头上一戴,真是吓了一跳,生日礼帽把我的脸都遮住了。于是我又重新做一个,心想:刚才做的太大了,现在我做的小点,该不会再有什么问题了吧!可是,事与愿违,这次又太小了。真是一肚子火,一下子太大,一下子又太小,搞什么呀!正在我火冒三丈,拿生日礼帽没辙时,一个电话提醒了我。 原来,是我的同学问我数学作业怎么做。于是我脑子里一下子闪过:这几天我们不是刚学过有关圆锥的知识吗?唉,我真是糊涂啊!有近路不走绕远路,自找麻烦。 于是,我便行动起来。 首先静下心来,在脑子里勾画一下那生日礼帽的形状与结构。 然后画出礼帽展开后的大致图像:它是一个扇形,半径为圆锥的母线长,弧长为圆锥底面周长——帽子口的大小。因此,要先测量我们头的大小,确定帽子口的大小,根据圆的周长公式c=2πR,可以知道圆锥底面半径R(帽子口的半径),还有要做的礼帽有多高应想先好哦。 在脑子里构思好以后,就开始具体的实施工作:用皮尺量的自己的头一周为5 7cm,且准备要做的礼帽的高为28.5cm。 接着计算如下 ∵ c=2πR 即 57=2×πR ∴R≈9 cm; ∵ l2 =h2 +R2 ∴l=30cm; 而扇形的弧长即底面周长2πR =nπl/180 ∴圆心角n=57×180/15π ≈109°。 计算好后,准备纸张,照计算好的尺寸画扇形(留出捏合的缝地),再用剪刀剪出扇形,最后用双面胶把扇形的两条半径处捏合在一起,这样一顶生日礼帽就做好了。 生活中处处有数学,我们只要学好理论知识,并学会运用,那么我们就可以解决生活中许多数学问题。理论要与实际相结合,数学知识就不再只为做题而思考了,而是可以为我们生活的需要服务.

5,如何真正实现数学与生活的紧密结合论文

你好!真正实现数学与生活的紧密结合论文咱们一起谈谈,如有疑问,请追问。
一篇内质不错的文章,字迹可憎,其分值往往不理想。为何?其一,字和卷面差,按评分要求要扣分,其二,试卷的“面目”在一定程度上控制着阅卷者打分的情绪。美观整洁的书写是文章最好的“外衣”,它对阅卷者评分印象的形成是直接有效的:首先,笔划要清楚。字迹笔划清楚,字体端正,就能给阅卷者留下好印象。相反,龙飞凤舞,一路狂草,但难以辨认,就算文章写得好,也难以让人欣赏。其次,字体要适中。字体过大,卷面有拥挤繁乱之感,观之不雅。字体过小,阅读起来如觉蚁行,极其费神。再次,尽量少涂改。要涂改也须规范地涂改,切忌乱涂乱画,在卷面留下醒目的墨点,造成凌乱之感。拟好题题目是文章的眼睛,是文章传递显要信息的重要部分。由于它位居文章结构之首,所以文章题目的优劣也会直接影响阅卷者对文章的第一印象。议论文拟题的基本要求是:在准确的基础上力求醒目、舒畅。具体而言,可鲜明,可形象,可简洁,可别致,可整齐,不一而足。总之,以能激发阅卷者阅读兴趣或使之有耳目一新之感为最佳。议论文的题目要求符合文体特征,要求鲜明,使人见其题而知其旨。观点鲜明的文章最受阅卷者的欢迎,因为它具有清澈感和透明感,能够传达出文章内容之大概,便于把握整篇文章的基本内容。开好头高尔基说过:“(开头)好像音乐里定调一样,全曲的音调都是它给予的,也是作者花功夫的所在。”议论文的开头要讲究“短、快、靓”。短,即要简捷,最好三两句成段,引入本论。开头短,可避免冗长之赘,而且短句成段,在空间上突出其内容的重要性。快,即入题要快,最好三言两语就点明文章的基本观点或议论的话题。因为评分标准中有“中心明确”的细则。开篇确定中心,有利于阅卷者按等计分,也有利于作者展开论述,不致出现主旨不清、中途转换论题等作文大忌。靓,即要精彩。这也是传统文论中所说的“凤头”。精彩的开头,最突出的效果是吸引阅卷者,给阅卷者留下好的印象。文章开头要精彩,多用比喻、类比、排比等修辞引入论点,还可引述名言,讲述寓言故事导入话题。中间段写好首句和末句议论文的结构是否严谨,条理是否清楚,论证是否严密,论据是否典型,关键在中间段的写作。而结构、条理、论证和论据等是议论文评分的重要细则,因此,写作议论文要尽量符合这些标准。常见的论述模式是:首句为小论点或承上启下的过渡词句;中间围绕小论点,运用恰当的事实、理论论据,或针对现实生活中的某些现象,分析说理;最后结合论述内容写一两句小结的话语。其中首句和末句的写作最重要,它能直接勾勒文章的脉络,显示全文的论述思路。另外,文章的整体论证结构常用正反对比式。许多道理只要从正反两面说了,就基本上可做到论述严密。在考场中熟练地运用这种作文模式,可迅速地展开写作,减少失误,节省时间。同时,它可使阅卷者能便捷地依据评分标准,在中档以上分项计分,避免不利于考生的个人评分因素出现。

6,求一篇小学数学与生活论文

小学数学论文范文|新课标下小学数学与生活的接轨 新的一轮课程改革,进一步促使数学生活化,数学与生活进一步接轨是指从学生的已有经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用过程。数学源于生活,生活中又充满着数学。因此,数学教学内容应力求从学生熟悉的生活情境出发设计数学问题,让学生真正体验数学与生活的关系,从而实现“人人学有价值的数学;人人都能获得必需的数学”。为此,教师要经常引导学生提供他们所熟悉的经验,充分利用学生现有的知识经验和他们所熟悉的事物组织教学,把学生的生活经验课堂化,将抽象的数学转化为有趣、生动、易于理解的事物,贴近生活,这就要求小学数学教学要与生活进一步接轨。 一、数学情境与生活接轨 教师将学生熟悉的生活情境和感兴趣的问题作为数学活动的切入点,能让学生感到数学来自于生活,生活中处处有数学,增强学习的好奇和兴趣,从而进入一个良好的学习状态。在日常教学中,用学生熟悉的生活经验作教学实例,利用学生已有的生活经验学习数学知识。 如:在教学《分桃子》一课时,我创设情境:先要求每个学生拿出9个桃子放在盘子里,每盘放的个数一样多,有几种放法,可以放几盘?当学生操作完之后,从中选择五种:(1)每盘放3个,9÷3=3(盘);(2)每盘放9个,9÷9=1(盘);(3)每盘放2个,9÷2=4(盘),多1个;(4)每盘放4个,9÷4=2(盘)多1个;(5)每盘放5个,9÷5=1(盘)多4个。接下来引导学生观察上面五个除法式子,并提问:可分成几种情况;学生于是很快的观察到:一类正好分完,另一类分完后还有剩余的。于是老师再画龙点睛地指出,正好分完的除法和除法算式,这是我们以前学过的;分了以后还剩余的算式,我们就把它叫做“有余数的除法”,这样创设生活情景,可以使课堂教学更接近现实生活,使学生身临其境,轻松的接受新知识。 二、数学理解与生活接轨 生活是数学的源泉,生活中更是充满着数学问题。善于捕捉生活现象,沟通数学知识与生活实际的联系,把生活中的问题逐步抽象成为数学问题,是激发学生学习兴趣,并使之产生学习需要的有效方法。新的课程标准更多地强调学生用数学的眼光从生活中捕捉数学问题,探索数学规律,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。在教学中我们要善于从学生的生活中抽象数学问题,从学生的已有生活经验出发,设计学生感兴趣的生活素材以丰富多彩的形式展现给学生,使学生感受到数学与生活的联系——数学无处不在,生活处处有数学。 如:在教学两位数乘法后,安排这样一个数学问题,学校组织师生去公园游玩。老师28人,小朋友150人。公园门口写着:门票成人每人30元,学生每人15元,团体30人以上每人20人。请同学们设计一种你认为最好的购票方案。对这个问题,不同的学生有不同的设计方案: 1、全买团体票:(28+150)×20=3560元 2、不买团体票:28×30+150×15=3090元 3、一部分买团体票,一部分不买:(28+2)×20+(150-2)×15=2820元 通过不同的方案的比较,培养学生应用数学知识理财的意识。 三、日常生活“数学化” 孩子们的知识应该是在对话中形成,在交流中重组,在共享中倍增。在今天的“课堂超市”环节中,这一切体现得淋漓尽致。如:我先出示了文具价目表:篮球95元/个,排球50元/个,之后出示了一个数学问题,“买4个排球和6个篮球共要多少钱?”。这样的数学问题,没有用新教材的学生一般的解题思路只有这一种“95×6+50×4”,可是使用了新教材的孩子们却出现了多种解决方法:(1)95×6+50×4;(2)(95+50)×4+95×2;(3)(95+50)×6-50×2 通过“课堂超市”展示,使我们的数学走进了生活,使我们的孩子们体验到了解决问题策略的多样性,促使了孩子的思维开放性,培养了他们的实践能力和创新能力。 总而言之,引导学生捕捉生活现象,发现数学问题,将数学教学与生活接轨,让学生从生活中寻找数学素材,感受生活中处处有数学,数学处处有美感,缩短数学与生活的距离,扩大了学生的认知视野,拓展了学生的思维空间,既满足了学习和理解数学知识的需要,又体会了数学的价值,培养了数学兴趣,何乐而不为呢?为了使数学更接近生活,让数学教学充满生活气息和时代色彩,真正调动起学生学习数学的积极性,培养他们的自主创新能力和解决问题的能力是刻不容缓的教育使命。

7,写一篇关于生活数学的小论文

让课堂生活化的几点随想 把数学与儿童生活实际联系起来,可以让学生看到生活中处处充满数学,学生学起来也亲切、自然。然而,在以往的小学数学教学中,教师非常重视数学知识的传授,但很少关注数学知识和学生的实际生活有哪些联系。教师讲完新课就做书后面的练习,练习做了一题又一题。而学生也还只会按类型解题,不懂得怎么应用,既不知道数据从哪里来,又不知道解决某个问题需要哪些数据、怎样获得数据。因此,学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节。如何改变这一现状呢? 新大纲明确指出:义务阶段的数学教育必须是使学生获得适应未来社会的进一步发展必需的重要的数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;学生的数学学习内容应当是现实的、有意义的、富有挑战性的;数学知识来源于生活,生活离不开数学,数学与生活是无法剥离的,我们在课堂上要联系生活实际,在习题的编拟上也要贴近生活,让学生从熟知、亲近、现实的生活数学走进学生视野,使之产生亲近感,变得具体而生动,诱发学生动手、动口又动脑,想办法来探求解决问题的过程,增强其学习的主动性,发展求异思维,培养实事求是的科学态度和探索、创新的精神,实现我们的数学生活化。本人就结合《圆锥体的体积》这课谈谈怎样让课堂生活的几点体会。 一、联系生活,导入新课。每节课开始的导入就好比戏的序幕,如果设计和安排得合理,就能引发学生的兴趣,开启思维的闸门。同时,《数学课程标准》明确指出:数学教学要密切联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,……。因此,在教学过程中,教师要善于挖掘生活中的数学素材,联系学生的 生活实际,使学生发现数学就在自己身边,感受数学的趣味和作用,对数学产生亲切感 ,唤起学生的学习兴趣教学片断一:教师出示录像:( 几位农民把打完稻谷稻草堆成一个圆锥体草堆的情境)。师:这些农民叔叔在干什么呀?生:他们在堆草堆。师:他们把草堆成了什么形状?生:圆锥体师:你们知道他们为什么要把草堆成圆锥形吗?生:因为把草堆成圆锥形,下雨的时候,雨水就会顺着圆锥的侧面流下来,草堆里面就不进水,就像我们的伞一样,雨水顺着伞流下来。师:能不能把它堆成其它的形状呢?生:不能。师:求这堆草的体积,就是求什么?出示课题:今天我们就来研究“圆锥的体积”师:在这堂课上,你希望学到哪些知识?生1:我想知道圆锥体积的推导方法。生2:我想掌握圆锥体积的计算方法。生3:我想知道圆锥体在现实生活中有什么作用。生4:我希望能够运用圆锥体积的计算方法解决一些实际问题。……师:好的,就让我们一起努力,实现我们的目标吧!上面的情境导入虽然说城市的小孩子很少亲眼见面,但是电视、电影里经常见到,在一次春游时候他们还见到过,学生问草堆为什么都是堆成圆锥形的,能不能堆成其它的形状呢?所以在上这节课的时候,我就再一次把这个问题拿出作为导入,一方面,让学生知道圆锥是现实生活中到处可见的。另一方面,让学生知道圆锥还有它独特的作用。从而提高学生学习的兴趣。在学生的生活世界中,充满着许多学生熟悉的自然事物、社会事物中,人的生活中,我们只人细心观察,就可以从中找到问题的原型,然后将教材中的问题融入这个原型,对教材进行生活化,课堂就就会充满生活气息,学生在学习的过程中感受到数学学习的意义,体会到数学学习的价值,从而提高学习的积极性。 二、体验生活,理解新知。数学的产生源自于生活实践,数学的教学同样离不开实际的生活。因此数学课程的内容“应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、试验、猜测、验证、推理与交流”。在教学要求中使学生感受数学与现实生活的联系,不仅要求选材必须密切联系学生生活实际,而且要求数学教学必须从学生熟悉的生活情景和感兴趣的事物出发,为他们提供观察和操作的机会。 片断二:教师出示“削铅笔”的示意图:削之前,铅笔的一段是圆柱形,削之后,这一段变成了圆锥形。师:铅笔的一段削过后,什么变了,什么没变?从中你发现了什么?生:铅笔的一段由圆柱变成了圆锥形,但这个圆锥形与圆柱形等底等高。可以看到,圆锥的体积是和它等底等高的圆柱的体积的一部分。师:如果已知圆柱的体积,求和它等底等高的圆锥体积,需要知道什么?生:需要知道圆锥体积是和它等底等高的圆柱体积的几分之几。师:你希望通过什么办法,弄清圆锥体积是和它等底等高的圆柱体积的几分之几?生:通过实验。师:应该怎么做试验呢?看看书本能给我们带来什么启示。(阅读书上的实验方法)生阅读书上的实验方法师:书上所做的实验,为什么一定要用等底等高的圆柱和圆锥呢?师:如果给你相应的材料,你能做书的的实验吗?生:能。开始做实验……首先通过学生经常做的事“削铅笔”这个示例,明白圆锥体的积是和它等底等高的圆柱的体积有关。再通过把盛满水的圆锥体容器倒向等底等高的圆柱开容器或把盛满水的圆柱体容器倒向等底等高的容器圆锥的反复实验,发现规律等底等高的圆柱体容器的水总是圆锥体容器的三倍,如果二者底或高不同,则结论不成立,这样,学生便从实际操作中发现了圆锥体积的计算公式。面对这些数学问题,教学中不应靠教师一言堂唱独角戏,讲解每个号码的意义,而是让学生集思广益展开讨论,解决自己在实践活动中遇到的问题,充分发挥学生主体作用。同时,给那些肯钻研、爱学习的学生留有展示自己的机会,也是全体学生探索、创新知识的过程。 三、服务生活、巩固新知。 新课标中指出:“教师应该充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值。学习数学知识,是为了更好地去服务生活,应用于生活,学以致用”。所以,有些数学知识完全可以走出教室,让学生在生活空间中学习,在生活实践中感知,当学生面临生活实际问题时,能主动地从数学的角度,运用数学的思想方法寻求解决的办法。教学中,教师要创设运用数学知识的条件,给学生以实践活动的机会,引导学生自觉运用数学的基础知识、基本方法去分析与解决生活中的实际问题,使生活问题数学化,从而 让学生更深刻地体会到数学的应用价值,逐步培养学生的数学应用意识和应用能力。片断三:师:同学们,我们已经知道了怎么求圆锥的体积。那么我们能不能解决一些实际问题呢?生:能师:我们学校旁边有一堆沙,我们能不能求出那堆沙堆的体积呢?生:能师:现在我们就到现场去。(准备卷尺)师:要知道这堆沙的体积,首先要知道什么?生:要知道这堆沙的底面积和高?师:底面积和高知道吗?生:不知道师:那怎么办?生:可以测量。师:能不能直接测量出底面积?生:不能。师:那怎么办呀?生1:可以先测量底面直径。生2:可以先测量半径。生3:不知道底面的圆心在哪里,好难测量半径,还是测量直径好一点。师:现在我们就先测量直径和高,再求体积。……师:现在我们知道了这堆沙的堆的体积,能不能这堆沙的重量呢?生:只要知道1立方米的沙有多重,我们就可以求到这堆沙的重量。师:现在老师也不知道1立方米的沙多重呀,你们有没有办法呀?生1:我们有一个长方体的容器就好了,可以先量出这个容器的长、宽、高,再求出它的容积,再装满沙,称一下重量。然后再用重量除一下它的容积,就可以知道单位体积的重量。生2:不一定要长方体,我只要一个水桶就可以了,用同样的方法也可以求出单位体积的重量。师:现在这个问题就留给你们下午去完成。……学生在解题时,能联系自己的生活经验多角度的考虑,形成解决问题的基本策略,不能不说这是一种创新,这是学生具有良好数学意识的体现。的确,数学来源于生活,有很多的数学问题在现实生活中都能找到原型,而学生又容易理解那些有实际生活背景的数学问题。上面的例子,学生正是借助了生活中的经验,才解决了不一般的题目,这节课也取得了不一般的效果。因此,教学中教师除了要注重选择学生身边的感兴趣的事物,提出有关的数学问题外,还要注重为学生在生活中寻找解题的依托,使学生学会借助生活经验思考、探索数学问题。 总之,教师在设计教学时,要以《新课程标准》为指导,以教材为依据,又不拘泥于教材,要从学生的生活经验和已有的知识背景出发,让学生生活走进我们的数学课堂,让数学教学充满生活气息和时代色彩,真正调动起学生学习数学的积极性。一方面让学生在生活实际的情境中体验数学问题,结合自身的生活经验和已有的认知水平,围绕问题的解决,逐步把生活常识数学化;另一方面让学生自觉地把数学知识运用到各种具体的生活情境中,实现数学知识生活化。在课堂上要创设生动有趣的情境来启发诱导,在课外要积极运用数学知识解决实际问题。鼓励学生善于去发现生活中的数学问题,养成运用数学的态度观察和分析周围的事物的习惯,让数学更好的服务于生活。
感悟数学 曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r??,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r??=9??∏+6??∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r??=15??∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。
数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
我在商场学数学(一)今年过寒假,我和我妈妈行走在繁华的大街上,随处可见商家打出的“满200送200”的促销招牌。消费者们蜂拥而至,商场里人山人海,抢购成风。而实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满200送200元券”只是商家的一种促销手段,其中暗藏着数学问题。   就说满200送200元购物券。我妈妈先用490元买了一件羊绒外衣,送来了400元购物券。此时得到的四百元购物券,我们心里产生一种捡便宜的感觉,于是就产生了较强的购买欲望,意欲花完为快(一般商家的购物券都是限期消费,在一定的时期内没有消费就过期作废)。于是我们又花了248元券买了一双鞋,又用剩下的150元券中的128买了一条围巾。那么我们买东西到底便宜了多少呢?我算了一下128+248+490=866(元),这是原来不打折时需要花的钱。490/866,所打的折扣大约是五六折。并且我想商家在卖之前肯定先涨价,再打五六折商家还是赚了不少!(二)今年年底我市金博大购物中心开业,而金博大购物中心对面就是我市的老城购物中心,过年了,金博大购物中心实行有奖销售:特等奖10000元1名,一等奖1000元2名,二等奖100元10名,三等奖5元200名,老城购物中心则实行九五折优惠销售。我们想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大?   这又是一道问题,面对问题我们并不能一目了然.在实际问题中,金博大购物中心每组设奖销售的营业额和参加抽奖的人数都没有限制.所以这个问题应该有几种答案.   分析:(1)若金博大购物中心确定在单位时间内抽奖,当参加人数较少,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则金博大购物中心的销售方式更吸引顾客;(2)若甲商厦确定在单位时间内抽奖,而在单位时间内的消费者很多,那么它给顾客的优惠幅度就相应的小.因为金博大购物中心提供的优惠金额是固定的,共14000元(10000+2000+1000+1000=14000).假设两商厦提供的优惠都是14000元,则可知老城购物中心的营业额为280000元(14000÷5%=280000)。所以由此可得:   答案一:当两购物中心的营业额都为280000元时,两家购物中心所提供的优惠同样多。   答案二:当两商厦的营业额都不足280000元时,老城购物中心的优惠则小于14000元,所以这时金博大购物中心提供的优惠仍是14000元,优惠较大。   答案三:当两家的营业额都超过280000元时,老城购物中心的优惠则大于14000元,而金博大购物中心的优惠仍保持14000元时,老城购物中心所提供的实惠大。   像这样的问题,我们在日常生活中随处可见。由于广告的效应,加上顾客消费的心理和节假日的消费需求,各方面的原因导致了商场抢购现象的出现,商场的人流量多了,商品销售量也快速增长。你看,数学和生活是有着非常密切的关系的,所以说,数学值得我们去研究,去探索。

文章TAG:数学与生活2000字论文怎么写数学  生活  2000  
没有了